Displaying all 4 publications

Abstract:
Sort:
  1. Li B, Huang W, Zhang C, Feng S, Zhang Z, Lei Z, et al.
    Bioresour Technol, 2015;187:214-220.
    PMID: 25855527 DOI: 10.1016/j.biortech.2015.03.118
    The influence of TiO2 nanoparticles (TiO2-NPs) (10-50mg/L) on aerobic granulation of algal-bacterial symbiosis system was investigated by using two identical sequencing batch reactors (SBRs). Although little adverse effect was observed on their nitritation efficiency (98-100% in both reactors), algal-bacterial granules in the control SBR (Rc) gradually lost stability mainly brought about by algae growth. TiO2-NPs addition to RT was found to enhance the granulation process achieving stable and compact algal-bacterial granules with remarkably improved nitratation thus little nitrite accumulation in RT when influent TiO2-NPs⩾30mg/L. Despite almost similar organics and phosphorus removals obtained in both reactors, the stably high nitratation efficiency in addition to much stable granular structure in RT suggests that TiO2-NPs addition might be a promising remedy for the long-term operation of algal-bacterial granular system, most probably attributable to the stimulated excretion of extracellular polymeric substances and less filamentous TM7.
  2. Purba LDA, Zahra SA, Yuzir A, Iwamoto K, Abdullah N, Shimizu K, et al.
    J Environ Manage, 2023 May 01;333:117374.
    PMID: 36758398 DOI: 10.1016/j.jenvman.2023.117374
    Despite various research works on algal-bacterial aerobic granular sludge for wastewater treatment and resource recovery processes, limited information is available on its application in real wastewater treatment in terms of performance, microbial community variation and resource recovery. This study investigated the performance of algal-bacterial aerobic granular sludge on real low-strength wastewater treatment in addition to the characterization of microbial community and fatty acid compositions for biodiesel production. The results demonstrated 71% COD, 77% NH4+-N and 31% phosphate removal efficiencies, respectively. In addition, all the water parameters successfully met the effluent standard A, imposed by the Department of Environment (DOE) Malaysia. Core microbiome analyses revealed important microbial groups (i.e., Haliangium ochraceum, Burkholderiales and Chitinophagaceae) in bacterial community. Meanwhile the photosynthetic microorganisms, such as Oxyphotobacteria and Trebouxiophyceae dominated the algal-bacterial aerobic granular sludge, suggesting their important roles in granulation and wastewater treatment. Up to 12.51 mg/gSS lipid content was recovered from the granules. In addition, fatty acids composition showed high percetages of C16:0 and C18:0, demonstrating high feasibility to be used for biodiesel production application indicated by the cetane number, iodine value and oxidation stability properties.
  3. Zahra SA, Purba LDA, Abdullah N, Yuzir A, Iwamoto K, Lei Z, et al.
    Chemosphere, 2023 Apr 04;329:138595.
    PMID: 37023906 DOI: 10.1016/j.chemosphere.2023.138595
    Limited information is available on the characteristics of algal-bacterial aerobic granular sludge (AGS) treating real wastewater, especially on its alginate-like exopolymers (ALE) production. In addition, the effect of target microalgae species inoculation on the system performance has not been fully understood. This study aimed to reveal the effect of microalgae inoculation on the characteristics of algal-bacterial AGS and its ALE production potential. Two photo-sequencing batch reactors (PSBR) were employed, namely R1 with activated sludge and R2 with Tetradesmus sp. and activated sludge being inoculated, respectively. Both reactors were fed with locally sourced municipal wastewater and operated for 90 days. Algal-bacterial AGS were successfully cultivated in both reactors. No significant difference was observed between the performances of R1 and R2, reflecting that the inoculation of target microalgae species may not be crucial for the development of algal-bacterial AGS when treating real wastewater. Both reactors achieved an ALE yield of about 70 mg/g of volatile suspended solids (VSS), indicating that a substantial amount of biopolymer can be recovered from wastewater. Interestingly, boron was detected in all the ALE samples, which might contribute to granulation and interspecies quorum sensing. The enrichment of lipids content in ALE from algal-bacterial AGS treating real wastewater reveals its high resource recovery potential. Overall, the algal-bacterial AGS system is a promising biotechnology for simultaneous municipal wastewater treatment and resource (like ALE) recovery.
  4. Gou Z, Ma NL, Zhang W, Lei Z, Su Y, Sun C, et al.
    Environ Res, 2020 09;188:109829.
    PMID: 32798948 DOI: 10.1016/j.envres.2020.109829
    Intensive studies have been performed on the improvement of bioethanol production by transformation of lignocellulose biomass. In this study, the digestibility of corn stover was dramatically improved by using laccase immobilized on Cu2+ modified recyclable magnetite nanoparticles, Fe3O4-NH2. After digestion, the laccase was efficiently separated from slurry. The degradation rate of lignin reached 40.76%, and the subsequent cellulose conversion rate 38.37% for 72 h at 35 °C with cellulase at 50 U g-1 of corn stover. Compared to those of free and inactivated mode, the immobilized laccase pre-treatment increased subsequent cellulose conversion rates by 23.98% and 23.34%, respectively. Moreover, the reusability of immobilized laccase activity remained 50% after 6 cycles. The storage and thermal stability of the fixed laccase enhanced by 70% and 24.1% compared to those of free laccase at 65 °C, pH 4.5, respectively. At pH 10.5, it exhibited 16.3% more activities than its free mode at 35 °C. Our study provides a new avenue for improving the production of bioethanol with immobilized laccase for delignification using corn stover as the starting material.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links