Displaying all 7 publications

Abstract:
Sort:
  1. Lee XJ, Lee LY, Foo LP, Tan KW, Hassell DG
    J Environ Sci (China), 2012;24(9):1559-68.
    PMID: 23520862
    The present work covers the preparation of carbon-based nanosorbents by ethylene decomposition on stainless steel mesh without the use of external catalyst for the treatment of water containing nickel ions (Ni2+). The reaction temperature was varied from 650 to 850 degrees C, while reaction time and ethylene to nitrogen flow ratio were maintained at 30 min and 1:1 cm3/min, respectively. Results show that nanosorbents synthesised at a reaction temperature of 650 degrees C had the smallest average diameter (75 nm), largest BET surface area (68.95 m2/g) and least amount of impurity (0.98 wt.% Fe). A series of batch-sorption tests were performed to evaluate the effects of initial pH, initial metal concentration and contact time on Ni2+ removal by the nanosorbents. The equilibrium data fitted well to Freundlich isotherm. The kinetic data were best correlated to a pseudo second-order model indicating that the process was of chemisorption type. Further analysis by the Boyd kinetic model revealed that boundary layer diffusion was the controlling step. This primary study suggests that the prepared material with Freundlich constants compared well with those in the literature, is a promising sorbent for the sequestration of Ni2+ in aqueous solutions.
  2. Show PL, Ooi CW, Lee XJ, Yang CL, Liu BL, Chang YK
    Int J Biol Macromol, 2020 Nov 01;162:1711-1724.
    PMID: 32805284 DOI: 10.1016/j.ijbiomac.2020.08.065
    Adsorption of lysozyme on the dye-affinity nanofiber membranes was investigated in batch and dynamic modes. The membrane matrix was made of electrospun polyacrylonitrile nanofibers that were grafted with ethylene diamine (EDA) and/or chitosan (CS) for the coupling of Reactive Blue 49 dye. The physicochemical properties of these dye-immobilized nanofiber membranes (P-EDA-Dye and P-CS-Dye) were characterized microscopically, spectroscopically and thermogravimetrically. The capacities of lysozyme adsorption by the dye-affinity nanofiber membranes were evaluated under various conditions, namely pH, dye immobilized density, and loading flow rate. The adsorption of lysozyme to the dye-affinity nanofiber membranes was well fitted by Langmuir isotherm and pseudo-second kinetic models. P-CS-Dye nanofiber membrane had a better performance in the dynamic adsorption of lysozyme from complex chicken egg white solution. It was observed that after five cycles of adsorption-desorption, the dye-affinity nanofiber membrane did not show a significant loss in its capacity for lysozyme adsorption. The robustness as well as high dynamic adsorption capability of P-CS-Dye nanofiber membrane are promising for the efficient recovery of lysozyme from complex feedstock via nanofiber membrane chromatography.
  3. Lee XJ, Lee LY, Gan S, Thangalazhy-Gopakumar S, Ng HK
    Bioresour Technol, 2017 Jul;236:155-163.
    PMID: 28399419 DOI: 10.1016/j.biortech.2017.03.105
    This research investigated the potential of palm kernel shell (PKS), empty fruit bunch (EFB) and palm oil sludge (POS), abundantly available agricultural wastes, as feedstock for biochar production by slow pyrolysis (50mLmin(-1) N2 at 500°C). Various characterization tests were performed to establish the thermochemical properties of the feedstocks and obtained biochars. PKS and EFB had higher lignin, volatiles, carbon and HHV, and lower ash than POS. The thermochemical conversion had enhanced the biofuel quality of PKS-char and EFB-char exhibiting increased HHV (26.18-27.50MJkg(-1)) and fixed carbon (53.78-59.92%), and decreased moisture (1.03-2.26%). The kinetics of pyrolysis were evaluated by thermogravimetry at different heating rates (10-40°C). The activation energies determined by Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa models were similar, and comparable with literature data. The findings implied that PKS and EFB are very promising sources for biochars synthesis, and the obtained chars possessed significant biofuel potential.
  4. Lee XJ, Show PL, Katsuda T, Chen WH, Chang JS
    Bioresour Technol, 2018 Dec;269:489-502.
    PMID: 30172460 DOI: 10.1016/j.biortech.2018.08.090
    Membrane bioreactor (MBR) is regarded as the state-of-the-art technology in separation processes. Surface modification techniques play a critical role in improving the conventional membrane system which is mostly hydrophobic in nature. The hydrophobic nature of membranes is known to cause fouling, resulting in high maintenance costs and shorter lifespan of MBR. Thus, surface grafting aims to improve the hydrophilicity of bio-based membrane systems. This review describes the major surface grafting techniques currently used in membranes, including photo induced grafting, plasma treatment and plasma induced grafting, radiation induced grafting, thermal induced grafting and ozone induced grafting. The advantages and disadvantages of each method is discussed along with their parametric studies. The potential applications of MBR are very promising, but some integral membrane properties could be a major challenge that hinders its wider reach. The fouling issue could be resolved with the surface grafting techniques to achieve better performance of MBRs.
  5. Lee XJ, Ong HC, Ooi J, Yu KL, Tham TC, Chen WH, et al.
    J Hazard Mater, 2022 Feb 05;423(Pt A):126921.
    PMID: 34523506 DOI: 10.1016/j.jhazmat.2021.126921
    Colourants, micropollutants and heavy metals are regarded as the most notorious hazardous contaminants found in rivers, oceans and sewage treatment plants, with detrimental impacts on human health and environment. In recent development, algal biomass showed great potential for the synthesis of engineered algal adsorbents suitable for the adsorptive management of various pollutants. This review presents comprehensive investigations on the engineered synthesis routes focusing mainly on mechanical, thermochemical and activation processes to produce algal adsorbents. The adsorptive performances of engineered algal adsorbents are assessed in accordance with different categories of hazardous pollutants as well as in terms of their experimental and modelled adsorption capacities. Due to the unique physicochemical properties of macroalgae and microalgae in their adsorbent forms, the adsorption of hazardous pollutants was found to be highly effective, which involved different mechanisms such as physisorption, chemisorption, ion-exchange, complexation and others depending on the types of pollutants. Overall, both macroalgae and microalgae not only can be tailored into different forms of adsorbents based on the applications, their adsorption capacities are also far more superior compared to the conventional adsorbents.
  6. Lee XJ, Lee LY, Hiew BYZ, Gan S, Thangalazhy-Gopakumar S, Kiat Ng H
    Bioresour Technol, 2017 Dec;245(Pt A):944-953.
    PMID: 28946195 DOI: 10.1016/j.biortech.2017.08.175
    This research investigated the removal of lead (Pb(2+)) by a novel biochar derived from palm oil sludge (POS-char) by slow pyrolysis. Multistage optimizations with central composite design were carried out to firstly optimize pyrolysis parameters to produce the best POS-char for Pb(2+) removal and secondly to optimize adsorption conditions for the highest removal of Pb(2+). The optimum pyrolysis parameters were nitrogen flowrateof30mLmin(-1), heating rateof10°Cmin(-1), temperatureof500°C and timeof30min. The optimum Pb(2+) adsorption conditions were concentrationof200mgL(-1), timeof60min, dosageof0.3g and pH of 3.02. The various functional groups within POS-char played a vital role in Pb(2+) uptake. Regeneration was demonstrated to be feasible using hydrochloric acid. Adsorption equilibrium was best described by Freundlich model. At low concentration range, adsorption kinetic obeyed pseudo-first-order model, but at high concentration range, it followed pseudo-second-order model. Overall, the results highlighted that POS-char is an effective adsorbent for Pb(2+) removal.
  7. Hiew BYZ, Lee LY, Lee XJ, Thangalazhy-Gopakumar S, Gan S
    Environ Sci Pollut Res Int, 2021 Aug;28(30):40608-40622.
    PMID: 32601866 DOI: 10.1007/s11356-020-09594-3
    Heavy metals released by various industries are among the major pollutants found in water resources. In this research, biosorption technique was employed to remove cadmium (Cd2+) from an aqueous system using a novel biosorbent developed from okara waste (OW), a residue from soya bean-based food and beverage processing. Characterisation results revealed that the OW biosorbent contained functional groups such as hydroxyl-, carboxyl- and sulphur-based functional groups, and the surface of the biosorbent was rough with multiple fissures which might be the binding sites for the pollutant. The effects of dosage, solution pH, initial Cd2+ concentration, temperature and contact time were investigated using batch adsorption mode. The biosorption equilibrium and kinetic were best described by the Langmuir and Elovich models, respectively. The maximum biosorption capacities predicted by the Langmuir model were 10.91-14.80 mg/g at 30-70 °C, and the biosorption process was favourable as evident from 0 < RL < 1. The uptake of Cd2+ by the OW biosorbent was spontaneous and endothermic. The plausible biosorption mechanisms of this study could be ionic exchange, hydrogen bonding and electrostatic interactions. The Cd2+ loaded OW biosorbent could be regenerated using 0.4 M of HCl solution and regeneration was studied for 4 adsorption-desorption cycles. The present investigation supported that OW can be reused as a value-added biosorbent product for the removal of Cd2+ from the contaminated water.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links