Displaying all 2 publications

Abstract:
Sort:
  1. Kam CZ, Kueh AB
    ScientificWorldJournal, 2013;2013:350890.
    PMID: 24319360 DOI: 10.1155/2013/350890
    A laminated composite plate element with an interface description is developed using the finite element approach to investigate the bending performance of two-layer cross-ply laminated composite plates in presence of a diagonally perturbed localized interfacial degeneration between laminae. The stiffness of the laminate is expressed through the assembly of the stiffnesses of lamina sub-elements and interface element, the latter of which is formulated adopting the well-defined virtually zero-thickness concept. To account for the extent of both shear and axial weak bonding, a degeneration ratio is introduced in the interface formulation. The model has the advantage of simulating a localized weak bonding at arbitrary locations, with various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. Numerical results show that the bending behavior of laminate is significantly affected by the aforementioned parameters, the greatest effect of which is experienced by those with a localized total interface degeneration, representing the case of local delamination.
  2. Ratnasari A, Syafiuddin A, Zaidi NS, Hong Kueh AB, Hadibarata T, Prastyo DD, et al.
    Environ Pollut, 2022 Jan 01;292(Pt B):118474.
    PMID: 34763013 DOI: 10.1016/j.envpol.2021.118474
    The emergence and continual accumulation of industrial micropollutants such as dyes, heavy metals, organic matters, and pharmaceutical active compounds (PhACs) in the ecosystem pose an alarming hazard to human health and the general wellbeing of global flora and fauna. To offer eco-friendly solutions, living and non-living algae have lately been identified and broadly practiced as promising agents in the bioremediation of micropollutants. The approach is promoted by recent findings seeing better removal performance, higher efficiency, surface area, and binding affinity of algae in various remediation events compared to bacteria and fungi. To give a proper and significant insight into this technology, this paper comprehensively reviews its current applications, removal mechanisms, comparative efficacies, as well as future outlooks and recommendations. In conducting the review, the secondary data of micropollutants removal have been gathered from numerous sources, from which their removal performances are analyzed and presented in terms of strengths, weaknesses, opportunities, and threats (SWOT), to specifically examine their suitability for selected micropollutants remediation. Based on kinetic, isotherm, thermodynamic, and SWOT analysis, non-living algae are generally more suitable for dyes and heavy metals removal, meanwhile living algae are appropriate for removal of organic matters and PhACs. Moreover, parametric effects on micropollutants removal are evaluated, highlighting that pH is critical for biodegradation activity. For selective pollutants, living and non-living algae show recommendable prospects as agents for the efficient cleaning of industrial wastewaters while awaiting further supporting discoveries in encouraging technology assurance and extensive applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links