Polyaniline composites consisting of carboxymethyl cellulose (CMC) have enhanced adsorption properties, but recent studies indicate that the oxidised species - dialdehyde carboxymethyl cellulose (DCMC) - outperforms CMC-based composites. However, these studies fail to study the effect of DCMC's aldehyde content and compare the composites with CMC-based composites; numerous experiments required to investigate each adsorbent for each factor limit such studies. We explored a way to study whether villi-structured polyaniline (VSPANI), its CMC composite (CMC/PANI), and its DCMC composites with 35% (DCMC(A)/PANI) and 77% (DCMC(B)/PANI) aldehyde content would be great adsorbents for removing bisphenol-A (BPA). We first customised a D-optimal screening design to alleviate the pitfalls of definitive screening design (DSD), hence estimating all the main effects: initial concentration, pH, flow rate, adsorbent amount, sample volume and type of adsorbent. We excluded CMC/PANI and DCMC(A)/PANI composites, both with low adsorption capacities of 56.57 and 57.27 mg/g from further investigation. The DSD followed to estimate all second-order effects through which we projected a response surface method (RSM) to optimise and model the active factors. Increasing the aldehyde content on the composites favoured adsorption, but there lacked evidence to suggest VSPANI and DCMC(B)/PANI differed significantly in performance. The models were numerically and graphically proven adequate, explaining 80% and 99% of the variation when predicting removal efficiency and adsorption capacity. VSPANI showed potential as an adsorbent for BPA removal with 85% removal efficiency and 129 mg/g adsorption capacity. This comprehensive approach, combining both designs, allows for sustainable investigation of multiple adsorbents and factors, minimising experimental waste.
Analytical processes involving sample preparation, separation, and quantifying analytes in complex mixtures are indispensable in modern-day analysis. Each step is crucial to enriching correct and informative results. Therefore, sample preparation is the critical factor that determines both the accuracy and the time consumption of a sample analysis process. Recently, several promising sample preparation approaches have been made available with environmentally friendly technologies with high performance. As a result of its many advantages, solid-phase extraction (SPE) is practiced in many different fields in addition to the traditional methods. The SPE is an alternative method to liquid-liquid extraction (LLE), which eliminates several disadvantages, including many organic solvents, a lengthy operation time and numerous steps, potential sources of error, and high costs. SPE advanced sorbent technology reorients with various functions depending on the structure of extraction sorbents, including reversed-phase, normal-phase, cation exchange, anion exchange, and mixed-mode. In addition, the commercial SPE systems are disposable. Still, with the continual developments, the restricted access materials (RAM) and molecular imprinted polymers (MIP) are fabricated to be active reusable extraction cartridges. This review will discuss all the theoretical and practical principles of the SPE techniques, focusing on packing materials, different forms, and performing factors in recent and future advances. The information about novel methodological and instrumental solutions in relation to different variants of SPE techniques, solid-phase microextraction (SPME), in-tube solid-phase microextraction (IT-SPME), and magnetic solid-phase extraction (MSPE) is presented. The integration of SPE with analytical chromatographic techniques such as LC and GC is also indicated. Furthermore, the applications of these techniques are discussed in detail along with their advantages in analyzing pharmaceuticals, biological samples, natural compounds, pesticides, and environmental pollutants, as well as foods and beverages.