METHODS: In this study, the drawbacks of DTF and PDC are addressed by proposing a novel technique, termed as Efficient Effective Connectivity (EEC), for the estimation of EC between multivariate sources using AR spectral estimation and Granger causality principle. In EEC, a linear predictive filter with AR coefficients obtained via multivariate EEG is used for signal prediction. This leads to the estimation of full-length signals which are then transformed into frequency domain by using Burg spectral estimation method. Furthermore, the newly proposed normalization method addressed the effect on each source in EEC using the sum of maximum connectivity values over the entire frequency range. Lastly, the proposed dynamic thresholding works by subtracting the first moment of causal effects of all the sources on one source from individual connections present for that source.
RESULTS: The proposed method is evaluated using synthetic and real resting-state EEG of 46 healthy controls. A 3D-Convolutional Neural Network is trained and tested using the PDC and EEC samples. The result indicates that compared to PDC, EEC improves the EEG eye-state classification accuracy, sensitivity and specificity by 5.57%, 3.15% and 8.74%, respectively.
CONCLUSION: Correct identification of all connections in synthetic data and improved resting-state classification performance using EEC proved that EEC gives better estimation of directed causality and indicates that it can be used for reliable understanding of brain mechanisms. Conclusively, the proposed technique may open up new research dimensions for clinical diagnosis of mental disorders.