Mefenamic acid (Mfe) is one of the most frequently detected nonsteroidal anti-inflammatory drugs in the environment. This study investigated the kinetics and the transformation by-products of Mfe during aqueous chlorination. The potential ecotoxicity of the transformation by-products was also evaluated. In the kinetic study, the second-order rate constant (kapp) for the reaction between Mfe and free available chlorine (FAC) was determined at 25 ± 0.1 °C. The result indicated that the degradation of Mfe by FAC is highly pH-dependent. When the pH was increased from 6 to 8, it was found that the kapp for the reaction between Mfe and FAC was decreased from 16.44 to 4.4 M(-1) s(-1). Characterization of the transformation by-products formed during the chlorination of Mfe was carried out using liquid chromatography-quadrupole time-of-flight accurate mass spectrometry. Four major transformation by-products were identified. These transformation by-products were mainly formed through hydroxylation, chlorination and oxidation reactions. Ecotoxicity assessment revealed that transformation by-products, particularly monohydroxylated Mfe which is more toxic than Mfe, can be formed during aqueous chlorination.
This study investigated the reaction kinetics and the transformation by-products of acebutolol during aqueous chlorination. Acebutolol is one of the commonly used β-blockers for the treatment of cardiovascular diseases. It has been frequently detected in the aquatic environment. In the kinetics study, the second-order rate constant for the reaction between acebutolol and chlorine (k app) was determined at 25 ± 0.1 °C. The degradation of acebutolol by free available chlorine was highly pH dependence. When the pH increased from 6 to 8, it was found that the k app for the reaction between acebutolol and free available chlorine was increased from 1.68 to 11.2 M(-1) min(-1). By comparing with the reported k app values, the reactivity of acebutolol toward free available chlorine was found to be higher than atenolol and metoprolol but lower than nadolol and propranolol. Characterization of the transformation by-products formed during the chlorination of acebutolol was carried out using liquid chromatography-quadrupole time-of-flight high-resolution mass spectrometry. Seven major transformation by-products were identified. These transformation by-products were mainly formed through dealkylation, hydroxylation, chlorination, and oxidation reactions.