Displaying all 3 publications

Abstract:
Sort:
  1. Carlier J, Zapater MF, Lapeyre F, Jones DR, Mourichon X
    Phytopathology, 2000 Aug;90(8):884-90.
    PMID: 18944510 DOI: 10.1094/PHYTO.2000.90.8.884
    ABSTRACT A previously undescribed leaf spot disease of banana has been discovered in southern and Southeast Asia. The fungus identified as the causal agent of this leaf spot has a Mycosphaerella teleomorph stage and a Septoria anamorph stage. Isolation and reinoculation of the fungus to banana reproduced symptoms and confirmed its pathogenicity. Phylogenic analysis based on sequences of the internal transcribed spacer and 5.8S ribosomal DNA regions from the different leaf spot pathogens of bananas was consistent with the definition of a new species. M. eumusae (anamorph S. eumusae) is the name proposed for the causal agent and Septoria leaf spot as the name for the disease. The presence of the pathogen has been confirmed in leaf specimens from southern India, Sri Lanka, Thailand, Malaysia, Vietnam, Mauritius, and Nigeria.
  2. Mohd Azmi MA, Tehrani Z, Lewis RP, Walker KA, Jones DR, Daniels DR, et al.
    Biosens Bioelectron, 2014 Feb 15;52:216-24.
    PMID: 24060972 DOI: 10.1016/j.bios.2013.08.030
    In this article we present ultra-sensitive, silicon nanowire (SiNW)-based biosensor devices for the detection of disease biomarkers. An electrochemically induced functionalisation method has been employed to graft antibodies targeted against the prostate cancer risk biomarker 8-hydroxydeoxyguanosine (8-OHdG) to SiNW surfaces. The antibody-functionalised SiNW sensor has been used to detect binding of the 8-OHdG biomarker to the SiNW surface within seconds of exposure. Detection of 8-OHdG concentrations as low as 1 ng/ml (3.5 nM) has been demonstrated. The active device has been bonded to a disposable printed circuit which can be inserted into an electronic readout system as part of an integrated Point of Care (POC) diagnostic. The speed, sensitivity and ease of detection of biomarkers using SiNW sensors render them ideal for eventual POC diagnostics.
  3. Piccini JP, Stromberg K, Jackson KP, Laager V, Duray GZ, El-Chami M, et al.
    Heart Rhythm, 2017 05;14(5):685-691.
    PMID: 28111349 DOI: 10.1016/j.hrthm.2017.01.026
    BACKGROUND: Device repositioning during Micra leadless pacemaker implantation may be required to achieve optimal pacing thresholds.

    OBJECTIVE: The purpose of this study was to describe the natural history of acute elevated Micra vs traditional transvenous lead thresholds.

    METHODS: Micra study VVI patients with threshold data (at 0.24 ms) at implant (n = 711) were compared with Capture study patients with de novo transvenous leads at 0.4 ms (n = 538). In both cohorts, high thresholds were defined as >1.0 V and very high as >1.5 V. Change in pacing threshold (0-6 months) with high (1.0 to ≤1.5 V) or very high (>1.5 V) thresholds were compared using the Wilcoxon signed-rank test.

    RESULTS: Of the 711 Micra patients, 83 (11.7%) had an implant threshold of >1.0 V at 0.24 ms. Of the 538 Capture patients, 50 (9.3%) had an implant threshold of >1.0 V at 0.40 ms. There were no significant differences in patient characteristics between those with and without an implant threshold of >1.0 V, with the exception of left ventricular ejection fraction in the Capture cohort (high vs low thresholds, 53% vs 58%; P = .011). Patients with an implant threshold of >1.0 V decreased significantly (P < .001) in both cohorts. Micra patients with high and very high thresholds decreased significantly (P < .01) by 1 month, with 87% and 85% having 6-month thresholds lower than the implant value. However, when the capture threshold at implant was >2 V, only 18.2% had a threshold of ≤1 V at 6 months and 45.5% had a capture threshold of >2 V.

    CONCLUSIONS: Pacing thresholds in most Micra patients with elevated thresholds decrease after implant. Micra device repositioning may not be necessary if the pacing threshold is ≤2 V.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links