Displaying all 2 publications

Abstract:
Sort:
  1. Jeon AJ, Kellogg D, Khan MA, Tucker-Kellogg G
    Biochem Mol Biol Educ, 2021 01;49(1):140-150.
    PMID: 32746505 DOI: 10.1002/bmb.21414
    Laboratory pedagogy is moving away from step-by-step instructions and toward inquiry-based learning, but only now developing methods for integrating inquiry-based writing (IBW) practices into the laboratory course. Based on an earlier proposal (Science 2011;332:919), we designed and implemented an IBW sequence in a university bioinformatics course. We automatically generated unique, double-blinded, biologically plausible DNA sequences for each student. After guided instruction, students investigated sequences independently and responded through IBW writing assignments. IBW assignments were structured as condensed versions of a scientific research article, and because the sequences were double blinded, they were also assessed as authentic science and evaluated on clarity and persuasiveness. We piloted the approach in a seven-day workshop (35 students) at Perdana University in Malaysia. We observed dramatically improved student engagement and indirect evidence of improved learning outcomes over a similar workshop without IBW. Based on student feedback, initial discomfort with the writing component abated in favor of an overall positive response and increasing comfort with the high demands of student writing. Similarly, encouraging results were found in a semester length undergraduate module at the National University of Singapore (155 students).
  2. Jeon AJ, Teo YY, Sekar K, Chong SL, Wu L, Chew SC, et al.
    BMC Cancer, 2023 Feb 03;23(1):118.
    PMID: 36737737 DOI: 10.1186/s12885-022-10444-3
    BACKGROUND: Conventional differential expression (DE) testing compares the grouped mean value of tumour samples to the grouped mean value of the normal samples, and may miss out dysregulated genes in small subgroup of patients. This is especially so for highly heterogeneous cancer like Hepatocellular Carcinoma (HCC).

    METHODS: Using multi-region sampled RNA-seq data of 90 patients, we performed patient-specific differential expression testing, together with the patients' matched adjacent normal samples.

    RESULTS: Comparing the results from conventional DE analysis and patient-specific DE analyses, we show that the conventional DE analysis omits some genes due to high inter-individual variability present in both tumour and normal tissues. Dysregulated genes shared in small subgroup of patients were useful in stratifying patients, and presented differential prognosis. We also showed that the target genes of some of the current targeted agents used in HCC exhibited highly individualistic dysregulation pattern, which may explain the poor response rate.

    DISCUSSION/CONCLUSION: Our results highlight the importance of identifying patient-specific DE genes, with its potential to provide clinically valuable insights into patient subgroups for applications in precision medicine.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links