Displaying all 3 publications

Abstract:
Sort:
  1. Naz S, Gul A, Zia M, Javed R
    Appl Microbiol Biotechnol, 2023 Feb;107(4):1039-1061.
    PMID: 36635395 DOI: 10.1007/s00253-023-12364-z
    Versatile nature of copper oxide nanoparticles (CuO NPs) has made them an imperative nanomaterial being employed in nanomedicine. Various physical, chemical, and biological methodologies are in use for the preparation of CuO NPs. The physicochemical and biological properties of CuO NPs are primarily affected by their method of fabrication; therefore, selectivity of a synthetic technique is immensely important that makes these NPs appropriate for a specific biomedical application. The deliberate use of CuO NPs in biomedicine questions their biocompatible nature. For this reason, the present review has been designed to focus on the approaches employed for the synthesis of CuO NPs; their biomedical applications highlighting antimicrobial, anticancer, and antioxidant studies; and most importantly, the in vitro and in vivo toxicity associated with these NPs. This comprehensive overview of CuO NPs is unique and novel as it emphasizes on biomedical applications of CuO NPs along with its toxicological assessments which would be useful in providing core knowledge to researchers working in these domains for planning and conducting futuristic studies. KEY POINTS: • The recent methods for fabrication of CuO nanoparticles have been discussed with emphasis on green synthesis methods for different biomedical approaches. • Antibacterial, antioxidant, anticancer, antiparasitic, antidiabetic, and antiviral properties of CuO nanoparticles have been explained. • In vitro and in vivo toxicological studies of CuO nanoparticles exploited along with their respective mechanisms.
  2. Siddique S, Chaudhry MN, Ahmad SR, Nazir R, Javed R, Hafeez MR, et al.
    Sci Total Environ, 2024 Feb 20;912:169256.
    PMID: 38101629 DOI: 10.1016/j.scitotenv.2023.169256
    A pioneering study employed a holistic geostatistical approach to predict the spatial variability of a non sampled area in the Chenab River, Pakistan, using kriging interpolation for organochlorine pesticide (OCP)-polluted risk zones. The Present research intended to investigate the carcinogenic and non-carcinogenic human health risks, contamination levels, and spatial variation of OCPs in the Chenab River, Pakistan. The residual OCP content in sediment samples (n = 120) ranged from 0.056 to 32.14 ng/g. DDE and α-HCH were prevalent among all the samples analyzed, with mean concentrations of 15.84 ± 8.02 and 12.45 ± 6.72 ng/g, respectively. The order of magnitude of OCPs in sediment samples was DDTs > α-HCH > chlorothalonil > heptachlor > endosulfan > aldrin > dieldrin. The findings of the single (SPI) and Nemerow (Nel) pollution index of α-HCH, heptachlor, and aldrin depicted the Chenab River as a serious pollution risk zone. The outcomes of the Pearson correlation coefficient analysis represent the positive correlation among all OCPs, revealing the common origin. Distribution trends showed substantially higher (p 10-4 illustrated a substantial cancer health risk posed by α-HCH, heptachlor, aldrin, and dieldrin in the downstream zone. We recommend the urgent cessation of the ongoing discharge of OCPs into the Chenab River, which needs to be highlighted owing to the significant cancer risk to public health to ensure the good health and wellbeings.
  3. Adeel M, Lee JY, Zain M, Rizwan M, Nawab A, Ahmad MA, et al.
    Environ Int, 2019 06;127:785-800.
    PMID: 31039528 DOI: 10.1016/j.envint.2019.03.022
    BACKGROUND: Rare earth elements (REEs) are gaining attention due to rapid rise of modern industries and technological developments in their usage and residual fingerprinting. Cryptic entry of REEs in the natural resources and environment is significant; therefore, life on earth is prone to their nasty effects. Scientific sectors have expressed concerns over the entry of REEs into food chains, which ultimately influences their intake and metabolism in the living organisms.

    OBJECTIVES: Extensive scientific collections and intensive look in to the latest explorations agglomerated in this document aim to depict the distribution of REEs in soil, sediments, surface waters and groundwater possibly around the globe. Furthermore, it draws attention towards potential risks of intensive industrialization and modern agriculture to the exposure of REEs, and their effects on living organisms. It also draws links of REEs usage and their footprints in natural resources with the major food chains involving plants, animals and humans.

    METHODS: Scientific literature preferably spanning over the last five years was obtained online from the MEDLINE and other sources publishing the latest studies on REEs distribution, properties, usage, cycling and intrusion in the environment and food-chains. Distribution of REEs in agricultural soils, sediments, surface and ground water was drawn on the global map, together with transport pathways of REEs and their cycling in the natural resources.

    RESULTS: Fourteen REEs (Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Th and Yb) were plighted in this study. Wide range of their concentrations has been detected in agricultural soils (<15.9-249.1 μg g-1) and in groundwater (<3.1-146.2 μg L-1) at various sites worldwide. They have strong tendency to accumulate in the human body, and thus associated with kidney stones. The REEs could also perturb the animal physiology, especially affecting the reproductive development in both terrestrial and aquatic animals. In plants, REEs might affect the germination, root and shoot development and flowering at concentration ranging from 0.4 to 150 mg kg-1.

    CONCLUSIONS: This review article precisely narrates the current status, sources, and potential effects of REEs on plants, animals, humans health. There are also a few examples where REEs have been used to benefit human health. However, still there is scarce information about threshold levels of REEs in the soil, aquatic, and terrestrial resources as well as living entities. Therefore, an aggressive effort is required for global action to generate more data on REEs. This implies we prescribe an urgent need for inter-disciplinary studies about REEs in order to identify their toxic effects on both ecosystems and organisms.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links