Displaying all 11 publications

Abstract:
Sort:
  1. Mehmood A, Mubarak NM, Khalid M, Jagadish P, Walvekar R, Abdullah EC
    Sci Rep, 2020 11 18;10(1):20106.
    PMID: 33208815 DOI: 10.1038/s41598-020-77139-2
    Strain sensors in the form of buckypaper (BP) infiltrated with various polymers are considered a viable option for strain sensor applications such as structural health monitoring and human motion detection. Graphene has outstanding properties in terms of strength, heat and current conduction, optics, and many more. However, graphene in the form of BP has not been considered earlier for strain sensing applications. In this work, graphene-based BP infiltrated with polyvinyl alcohol (PVA) was synthesized by vacuum filtration technique and polymer intercalation. First, Graphene oxide (GO) was prepared via treatment with sulphuric acid and nitric acid. Whereas, to obtain high-quality BP, GO was sonicated in ethanol for 20 min with sonication intensity of 60%. FTIR studies confirmed the oxygenated groups on the surface of GO while the dispersion characteristics were validated using zeta potential analysis. The nanocomposite was synthesized by varying BP and PVA concentrations. Mechanical and electrical properties were measured using a computerized tensile testing machine, two probe method, and hall effect, respectively. The electrical conducting properties of the nanocomposites decreased with increasing PVA content; likewise, electron mobility also decreased while electrical resistance increased. The optimization study reports the highest mechanical properties such as tensile strength, Young's Modulus, and elongation at break of 200.55 MPa, 6.59 GPa, and 6.79%, respectively. Finally, electrochemical testing in a strain range of ε ~ 4% also testifies superior strain sensing properties of 60 wt% graphene BP/PVA with a demonstration of repeatability, accuracy, and preciseness for five loading and unloading cycles with a gauge factor of 1.33. Thus, results prove the usefulness of the nanocomposite for commercial and industrial applications.
  2. Jun LY, Mubarak NM, Yon LS, Bing CH, Khalid M, Jagadish P, et al.
    Sci Rep, 2019 02 18;9(1):2215.
    PMID: 30778111 DOI: 10.1038/s41598-019-39621-4
    Surface modified Multi-walled carbon nanotubes (MWCNTs) Buckypaper/Polyvinyl Alcohol (BP/PVA) composite membrane was synthesized and utilized as support material for immobilization of Jicama peroxidase (JP). JP was successfully immobilized on the BP/PVA membrane via covalent bonding by using glutaraldehyde. The immobilization efficiency was optimized using response surface methodology (RSM) with the face-centered central composite design (FCCCD) model. The optimum enzyme immobilization efficiency was achieved at pH 6, with initial enzyme loading of 0.13 U/mL and immobilization time of 130 min. The results of BP/PVA membrane showed excellent performance in immobilization of JP with high enzyme loading of 217 mg/g and immobilization efficiency of 81.74%. The immobilized system exhibited significantly improved operational stability under various parameters, such as pH, temperature, thermal and storage stabilities when compared with free enzyme. The effective binding of peroxidase on the surface of the BP/PVA membrane was evaluated and confirmed by Field emission scanning electron microscopy (FESEM) coupled with Energy Dispersive X-Ray Spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR) and Thermogravimetric Analysis (TGA). This work reports the characterization results and performances of the surface modified BP/PVA membrane for peroxidase immobilization. The superior properties of JP-immobilized BP/PVA membrane make it promising new-generation nanomaterials for industrial applications.
  3. Masri A, Abdelnasir S, Anwar A, Iqbal J, Numan A, Jagadish P, et al.
    Appl Microbiol Biotechnol, 2021 Apr;105(8):3315-3325.
    PMID: 33797573 DOI: 10.1007/s00253-021-11221-1
    BACKGROUND: Conducting polymer based nanocomposites are known to be effective against pathogens. Herein, we report the antimicrobial properties of multifunctional polypyrrole-cobalt oxide-silver nanocomposite (PPy-Co3O4-AgNPs) for the first time. Antibacterial activities were tested against multi-drug-resistant Gram-negative Escherichia coli (E. coli) and Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) bacteria, while antiamoebic effects were assessed against opportunistic protist Acanthamoeba castellanii (A. castellanii).

    RESULTS: The ternary nanocomposite containing conducting polymer polypyrrole, cobalt oxide, and silver nanoparticles showed potent antimicrobial effects against these pathogens. The antibacterial assay showed that PPy-Co3O4-AgNPs exhibited significant bactericidal activity against neuropathogenic E. coli K1 at only 8 μg/mL as compared to individual components of the nanocomposite, whereas a 70 % inhibition of A. castellanii viability was observed at 50 μg/mL. Moreover, PPy-Co3O4-AgNPs were found to have minimal cytotoxicity against human keratinocytes HaCaT cells in vitro even at higher concentration (50 μg/mL), and also reduced the microbes-mediated cytopathogenicity against host cells.

    CONCLUSION: These results demonstrate that PPy-Co3O4-AgNPs hold promise in the development of novel antimicrobial nanomaterials for biomedical applications.

    KEY POINTS: •Synthesis of polypyrrole-cobalt oxide-silver (PPy-Co3O4-AgNPs) nanocomposite. •Antimicrobial activity of nanocomposite. •PPy-Co3O4-AgNPs hold promise for biomedical applications.

  4. Anwar A, Chi Fung L, Anwar A, Jagadish P, Numan A, Khalid M, et al.
    Pathogens, 2019 Nov 22;8(4).
    PMID: 31766722 DOI: 10.3390/pathogens8040260
    T4 genotype Acanthamoeba are opportunistic pathogens that cause two types of infections, including vision-threatening Acanthamoeba keratitis (AK) and a fatal brain infection known as granulomatous amoebic encephalitis (GAE). Due to the existence of ineffective treatments against Acanthamoeba, it has become a potential threat to all contact lens users and immunocompromised patients. Metal nanoparticles have been proven to have various antimicrobial properties against bacteria, fungi, and parasites. Previously, different types of cobalt nanoparticles showed some promise as anti-acanthamoebic agents. In this study, the objectives were to synthesize and characterize the size, morphology, and crystalline structure of cobalt phosphate nanoparticles, as well as to determine the effects of different sizes of cobalt metal-based nanoparticles against A. castellanii. Cobalt phosphate octahydrate (CHP), Co3(PO4)2•8H2O, was synthesized by ultrasonication using a horn sonicator, then three different sizes of cobalt phosphates Co3(PO4)2 were produced through calcination of Co3(PO4)2•8H2O at 200 °C, 400 °C and 600 °C (CP2, CP4, CP6). These three types of cobalt phosphate nanoparticles were characterized using a field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analysis. Next, the synthesized nanoparticles were subjected to biological assays to investigate their amoebicidal, amoebistatic, anti-encystation, and anti-excystation effects against A. castellanii, as well as cell cytotoxicity. The overall results showed that 1.30 ± 0.70 µm of CHP microflakes demonstrated the best anti-acanthemoebic effects at 100 µg/mL, followed by 612.50 ± 165.94 nm large CP6 nanograins. However, amongst the three tested cobalt phosphates, Co3(PO4)2, the smaller nanoparticles had stronger antiamoebic effects against A. castellanii. During cell cytotoxicity analysis, CHP exhibited only 15% cytotoxicity against HeLa cells, whereas CP6 caused 46% (the highest) cell cytotoxicity at the highest concentration, respectively. Moreover, the composition and morphology of nanoparticles is suggested to be important in determining their anti-acathamoebic effects. However, the molecular mechanisms of cobalt phosphate nanoparticles are still unidentified. Nevertheless, the results suggested that cobalt phosphate nanoparticles hold potential for development of nanodrugs against Acanthamoeba.
  5. Zamiri G, Haseeb ASMA, Jagadish P, Khalid M, Kong I, Krishnan SG
    ACS Omega, 2022 Dec 06;7(48):43981-43991.
    PMID: 36506175 DOI: 10.1021/acsomega.2c05343
    Ternary nanocomposites synergistically combine the material characteristics of three materials, altering the desired charge storage properties such as electrical conductivity, redox states, and surface area. Therefore, to improve the energy synergistic of SnO2, TiO2, and three-dimensional graphene, herein, we report a facile hydrothermal technique to synthesize a ternary nanocomposite of three-dimensional graphene-tin oxide-titanium dioxide (3DG-SnO2-TiO2). The synthesized ternary nanocomposite was characterized using material characterization techniques such as XRD, Raman spectroscopy, FTIR spectroscopy, FESEM, and EDXS. The surface area and porosity of the material were studied using Brunauer-Emmett-Teller (BET) studies. XRD studies showed the crystalline nature of the characteristic peaks of the individual materials, and FESEM studies revealed the deposition of SnO2-TiO2 on 3DG. The BET results show that incorporating 3DG into the SnO2-TiO2 binary nanocomposite increased its surface area compared to the binary composite. A three-electrode system compared the electrochemical performances of both the binary and ternary composites as a battery-type supercapacitor electrode in different molar KOH (1, 3, and 6 M) electrolytes. It was determined that the ternary nanocomposite electrode in 6 M KOH delivered a maximum specific capacitance of 232.7 C g-1 at 1 A g-1. An asymmetric supercapacitor (ASC) was fabricated based on 3DG-SnO2-TiO2 as a positive electrode and commercial activated carbon as a negative electrode (3DG-SnO2-TiO2//AC). The ASC delivered a maximum energy density of 28.6 Wh kg-1 at a power density of 367.7 W kg-1. Furthermore, the device delivered a superior cycling stability of ∼97% after 5000 cycles, showing its prospects as a commercial ASC electrode.
  6. Chang YS, Au PI, Mubarak NM, Khalid M, Jagadish P, Walvekar R, et al.
    Environ Sci Pollut Res Int, 2020 Sep;27(26):33270-33296.
    PMID: 32529626 DOI: 10.1007/s11356-020-09423-7
    Two superior adsorbents, namely bentonite and graphene oxide (GO), were hybridised to study the removal of copper and nickel ions from synthetic and industrial wastewater. The as-synthesised GO, bentonite/GO and bentonite were characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and N2 adsorption-desorption analysis. The factors influencing the adsorption behaviours including contact time, initial solution pH, ionic strength, initial concentration of metal ions, temperature and adsorbent dosage were systematically investigated by batch equilibrium method. The adsorption equilibrium for copper and nickel onto bentonite was attained in 90 min while equilibrium was reached in 60 min on bentonite/GO. The adsorption of copper and nickel was pH-dependent in the range from pH 2 to pH 7 and from pH 2 to pH 8. Pseudo-first-order kinetic model excellently described the adsorption of copper and nickel onto bentonite and bentonite/GO. The equilibrium adsorption data was well described by the Langmuir isotherm model and the maximum adsorption capacity was 248.9 mg/g, 558.4 mg/g, 215.8 mg/g and 402.5 mg/g for bentonite-copper, bentonite/GO-copper, bentonite-nickel and bentonite/GO-nickel adsorption systems, respectively. The bentonite/GO composite exhibited a higher adsorption capacity of both cations from synthetic wastewater than pure bentonite owning to the synergistic effect between bentonite and GO. In all adsorption studies, copper was more efficiently removed than nickel due to its higher tendency to form bond with adsorbent surfaces. The adsorption of copper and nickel on bentonite/GO was mainly due to cation exchange, intermolecular and electrostatic interactions and physisorption dominated the adsorption processes. The practical application of bentonite/GO on adsorption of copper was investigated using real wastewater and its removal efficiency was beyond 98%. The excellent adsorption performances of composites for the copper and nickel removal from wastewater demonstrated its significant potential for pollution mitigations.
  7. Yee MJ, Mubarak NM, Khalid M, Abdullah EC, Jagadish P
    Sci Rep, 2018 Nov 23;8(1):17295.
    PMID: 30470825 DOI: 10.1038/s41598-018-35638-3
    Buckypaper (BP)/polymer composites are viewed as a viable option to improve the strain transfer across the buckypaper strain sensor by means of providing better interfacial bonding between the polymer and carbon nanotubes (CNTs). Multiwall carbon nanotubes (MWCNTs) BP/polyvinyl alcohol (PVA) composites were fabricated by a sequence of vacuum filtration and polymer intercalation technique. The optimized conditions for achieving a uniform and stable dispersion of MWCNTs were found to be using ethanol as a dispersion medium, 54 μm ultrasonic amplitude and 40 min sonication time. FTIR analysis and SEM spectra further confirmed the introduction of oxygenated groups (-COOH) on the surface of MWCNTs BP and the complete infiltration of PVA into the porous MWCNTs network. At MWCNTs content of 65 wt. %, the tensile strength, Young's modulus and elongation-at-break of PVA-infiltrated MWCNTs BP achieved a maximum value of 156.28 MPa, 4.02 GPa and 5.85%, improved by 189%, 443% and 166% respectively, as compared to the MWCNTs BP. Electrical characterization performed using both two-point probe method and Hall effect measurement showed that BP/PVA composites exhibited reduced electrical conductivity. From the electromechanical characterization, the BP/PVA composites showed improved sensitivity with a gauge factor of about 1.89-2.92. The cyclic uniaxial tensile test validated the high reproducibility and hysteresis-free operation of 65-BP/PVA composite under 3 loading-unloading cycles. Characterization results confirmed that the flexible BP/PVA composite (65 wt. %) with improved mechanical and electromechanical properties is suitable for strain sensing applications in structural health monitoring and wearable technology, as an alternative choice to the fragile nature of conventional metallic strain sensors.
  8. Jun LY, Karri RR, Mubarak NM, Yon LS, Bing CH, Khalid M, et al.
    Environ Pollut, 2020 Apr;259:113940.
    PMID: 31931415 DOI: 10.1016/j.envpol.2020.113940
    Jicama peroxidase (JP) was covalently immobilized onto functionalized multi-walled carbon nanotube (MWCNT) Buckypaper/Polyvinyl alcohol (BP/PVA) membrane and employed for degradation of methylene blue dye. The parameters of the isotherm and kinetic models are estimating using ant colony optimization (ACO), which do not meddle the non-linearity form of the respective models. The proposed inverse modelling through ACO optimization was implemented, and the parameters were evaluated to minimize the non-linear error functions. The adsorption of MB dye onto JP-immobilized BP/PVA membrane follows Freundlich isotherm model (R2 = 0.99) and the pseudo 1st order or 2nd kinetic model (R2 = 0.980 & 0.968 respectively). The model predictions from the parameters estimated by ACO resulted values close the experimental values, thus inferring that this approach captured the inherent characteristics of MB adsorption. Moreover, the thermodynamic studies indicated that the adsorption was favourable, spontaneous, and exothermic in nature. The comprehensive structural analyses have confirmed the successful binding of peroxidase onto BP/PVA membrane, as well as the effective MB dye removal using immobilized JP membrane. Compared to BP/PVA membrane, the reusability test revealed that JP-immobilized BP/PVA membrane has better dye removal performances as it can retain 64% of its dye removal efficiency even after eight consecutive cycles. Therefore, the experimental results along with modelling results demonstrated that JP-immobilized BP/PVA membrane is expected to bring notable impacts for the development of effective green and sustainable wastewater treatment technologies.
  9. Jun LY, Karri RR, Yon LS, Mubarak NM, Bing CH, Mohammad K, et al.
    Environ Res, 2020 04;183:109158.
    PMID: 32044575 DOI: 10.1016/j.envres.2020.109158
    Jicama peroxidase (JP) immobilized functionalized Buckypaper/Polyvinyl alcohol (BP/PVA) membrane was synthesized and evaluated as a promising nanobiocomposite membrane for methylene blue (MB) dye removal from aqueous solution. The effects of independent process variables, including pH, agitation speed, initial concentration of hydrogen peroxide (H2O2), and contact time on dye removal efficiency were investigated systematically. Both Response Surface Methodology (RSM) and Artificial Neural Network coupled with Particle Swarm Optimization (ANN-PSO) approaches were used for predicting the optimum process parameters to achieve maximum MB dye removal efficiency. The best optimal topology for PSO embedded ANN architecture was found to be 4-6-1. This optimized network provided higher R2 values for randomized training, testing and validation data sets, which are 0.944, 0.931 and 0.946 respectively, thus confirming the efficacy of the ANN-PSO model. Compared to RSM, results confirmed that the hybrid ANN-PSO shows superior modeling capability for prediction of MB dye removal. The maximum MB dye removal efficiency of 99.5% was achieved at pH-5.77, 179 rpm, ratio of H2O2/MB dye of 73.2:1, within 229 min. Thus, this work demonstrated that JP-immobilized BP/PVA membrane is a promising and feasible alternative for treating industrial effluent.
  10. Lau YJ, Karri RR, Mubarak NM, Lau SY, Chua HB, Khalid M, et al.
    Environ Sci Pollut Res Int, 2020 Nov;27(32):40121-40134.
    PMID: 32656753 DOI: 10.1007/s11356-020-10045-2
    The feasibility and performance of Jicama peroxidase (JP) immobilized Buckypaper/polyvinyl alcohol (BP/PVA) membrane for methylene blue (MB) dye removal was investigated in a customized multi-stage filtration column under batch recycle mode. The effect of independent variables, such as influent flow rate, ratio of H2O2/MB dye concentration, and contact time on the dye removal efficiency, were investigated using response surface methodology (RSM). To capture the inherent characteristics and better predict the removal efficiency, a data-driven adaptive neuro-fuzzy inference system (ANFIS) is implemented. Results indicated that the optimum dye removal efficiency of 99.7% was achieved at a flow rate of 2 mL/min, 75:1 ratio of H2O2/dye concentration with contact time of 183 min. The model predictions of ANFIS are significantly good compared with RSM, thus resulting in R2 values of 0.9912 and 0.9775, respectively. The enzymatic kinetic parameters, Km and Vmax, were evaluated, which are 1.98 mg/L and 0.0219 mg/L/min, respectively. Results showed that JP-immobilized BP/PVA nanocomposite membrane can be promising and cost-effective biotechnology for the practical application in the treatment of industrial dye effluents.
  11. Chai JB, Au PI, Mubarak NM, Khalid M, Ng WP, Jagadish P, et al.
    Environ Sci Pollut Res Int, 2020 Apr;27(12):13949-13962.
    PMID: 32036527 DOI: 10.1007/s11356-020-07755-y
    Adsorption capacity and percentage removal efficiency of Cu(II) and Ni(II) ions were studied and compared between raw kaolinite and acid-activated kaolinite. Acid-activated kaolin was prepared by refluxing raw kaolinite with concentrated sulphuric acid followed by calcination to enhance its surface properties and adsorption ability. Both raw and acid-activated kaolinite samples were characterized by Fourier transform infrared spectroscopy, energy dispersive X-ray, scanning electron micrograph and zeta potential analysis. Upon acid treatment, acid-activated kaolinite was discovered to have altered chemical composition and larger BET surface area as compared with raw kaolinite. The batch adsorption studies on aqueous solution were performed under different factors such as contact time, pH condition, adsorbent dosage, initial metal ion concentration and temperature. The optimum condition was selected for each factor including a contact time of 60 min, pH of 7.0, adsorbent dosage of 0.1 g, initial metal ion concentration of 100 mg/L and temperature of 25 °C. Then, the adsorption studies on wastewater samples were carried out at the selected optimum conditions. Acid-activated kaolinite always had better adsorption capacity and percentage removal efficiency than raw kaolinite due to the increasing amount of negative charges on the adsorbent surface and the number of metal ion binding sites upon acid treatment. The adsorption kinetic obtained was well described by the pseudo-second-order model, whereas the adsorption isotherms obtained were well described by either the Freundlich or the Langmuir adsorption model. The results showed that acid-activated kaolinite adsorbent is a better option as a favourable and feasible commercial low-cost adsorbent for wastewater treatment.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links