This article provides novel data on the microstructure and crystallographic texture of modern giant clam shells (Tridacna squamosa and Hippopus hippopus) from the Coral Triangle region of northeast Borneo. Giant clams have two aragonitic shell layers-the inner and outer shell layer. This dataset focuses on the inner shell layer as this is well preserved and not affected by diagenetic alteration. To prepare samples for analysis, shells were cut longitudinally at the axis of maximum growth and mounted onto thin sections. Data collection involved scanning electron microscopy (SEM) to determine microstructure and SEM based electron backscatter diffraction (EBSD) for quantitative measurement of crystallographic orientation and texture. Post-acquisition reanalysis of saved EBSD patterns to optimize data quality included changing the number of reflectors and band detection mode. We provide EBSD data as band contrast images and colour-coded orientation maps (inverse pole figure maps). Crystallographic co-orientation strength obtained with multiple of uniform density (MUD) values are derived from density distributed pole figures of indexed EBSD points. Raw EBSD data files are also given to ensure repeatability of the steps provided in this article and to allow extraction of further crystallographic properties for future researchers. Overall, this dataset provides 1. a better understanding of shell growth and biomineralization in giant clams and 2. important steps for optimizing data collection with EBSD analyses in biogenic carbonates.
A background study is important for the conservation and stock management of a species. Terapon jarbua is a coastal Indo-Pacific species, sourced for human consumption. This study examined 134 samples from the central west and east coasts of Peninsular (West) Malaysia and East Malaysia. A 1446-bp concatenated dataset of mtDNA COI and Cyt b sequences was used in this study and 83 haplotypes were identified, of which 79 are unique haplotypes and four are shared haplotypes. Populations of T. jarbua in Malaysia are genetically heterogenous as shown by the high level of haplotype diversity ranging from 0.9167-0.9952, low nucleotide diversity ranging from 0.0288-0.3434, and high FST values (within population genetic variation). Population genetic structuring is not distinct as shown by the shared haplotypes between geographic populations and mixtures of haplotypes from different populations within the same genetic cluster. The gene flow patterns and population structuring observed among these regions are likely attributed to geographical distance, past historical events, allopatric speciation, dispersal ability and water currents. For instance, the mixture of haplotypes revealed an extraordinary migration ability of T. jarbua (>1200 km) via ancient river connectivity. The negative overall value of the neutrality test and a non-significant mismatch distribution are consistent with demographic expansion(s) in the past. The median-joining network concurred with the maximum likelihood haplotype tree with three major clades resolved. The scarcity of information on this species is an obstacle for future management and conservation purposes. Hence, this study aims to contribute information on the population structure, genetic diversity, and historical demography of T. jarbua in Malaysia.