Displaying all 2 publications

Abstract:
Sort:
  1. Yap ZS, Khalid NHA, Haron Z, Mohamed A, Tahir MM, Hasyim S, et al.
    Materials (Basel), 2021 Oct 02;14(19).
    PMID: 34640174 DOI: 10.3390/ma14195777
    Massive waste rock wool was generated globally and it caused substantial environmental issues such as landfill and leaching. However, reviews on the recyclability of waste rock wool are scarce. Therefore, this study presents an in-depth review of the characterization and potential usability of waste rock wool. Waste rock wool can be characterized based on its physical properties, chemical composition, and types of contaminants. The review showed that waste rock wool from the manufacturing process is more workable to be recycled for further application than the post-consumer due to its high purity. It also revealed that the pre-treatment method-comminution is vital for achieving mixture homogeneity and enhancing the properties of recycled products. The potential application of waste rock wool is reviewed with key results emphasized to demonstrate the practicality and commercial viability of each option. With a high content of chemically inert compounds such as silicon dioxide (SiO2), calcium oxide (CaO), and aluminum oxide (Al2O3) that improve fire resistance properties, waste rock wool is mainly repurposed as fillers in composite material for construction and building materials. Furthermore, waste rock wool is potentially utilized as an oil, water pollutant, and gas absorbent. To sum up, waste rock wool could be feasibly recycled as a composite material enhancer and utilized as an absorbent for a greener environment.
  2. Usman AN, Ahmad M, Sinrang AW, Natsir S, Takko AB, Ariyandy A, et al.
    Breast Dis, 2023;42(1):213-218.
    PMID: 37458005 DOI: 10.3233/BD-239002
    BACKGROUND: FOXP3 Tregs have been found in breast cancer patients, both humoral and tumor. Survival or prognosis of breast cancer patients seems to correlate with the increase and decrease in FOXP3 Treg.

    OBJECTIVES: This review aims to provide insights regarding the FOXP3 Tregs involved and their mechanisms in breast cancer prognosis.

    METHODS: The literature study method is used from primary and secondary libraries. The library search used online-based search instruments such as NCBI-PubMed, Google Scholar, and Elsevier. The data obtained were then arranged according to the framework, data on the relationship between FOXP3 Regulatory T Cells and breast cancer, and writing a journal review was carried out according to the given format. Regulators (Tregs) can inhibit anti-tumor immunity and promote tumor growth. Tregs also play a role in inhibiting cytotoxic T lymphocyte cells by inhibiting the release of granules from CD8+, where CD8+ is important in killing tumor cells. FOXP3 is a Treg-specific biomarker and plays an important role in the development and function of Tregs.

    RESULTS: Studies on the presence of FOXP3+ Tregs in tumors have shown controversial results. Studies in some tumors reported the presence of FOXP3+, indicating a poor prognosis, whereas studies in other tumors found that FOXP3+ correlated with a good prognosis.

    CONCLUSION: Regulatory T lymphocytes and TILs in invasive breast carcinoma are still not established. Therefore, further research on the Effect of FOXP3 expression of regulatory T lymphocytes on breast cancer is still important.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links