Displaying all 4 publications

Abstract:
Sort:
  1. Harvey BJ, Thomas W
    Steroids, 2018 05;133:67-74.
    PMID: 29079406 DOI: 10.1016/j.steroids.2017.10.009
    Aldosterone acts through the mineralocorticoid receptor (MR) to modulate gene expression in target tissues. In the kidney, the principal action of aldosterone is to promote sodium conservation in the distal nephron and so indirectly enhance water conservation under conditions of hypotension. Over the last twenty years the rapid activation of protein kinase signalling cascades by aldosterone has been described in various tissues. This review describes the integration of rapid protein kinase D signalling responses with the non-genomic actions of aldosterone and transcriptional effects of MR activation.
  2. Thomas W, Dooley R, Quinn S, Robles MY, Harvey BJ
    Steroids, 2020 03;155:108553.
    PMID: 31836481 DOI: 10.1016/j.steroids.2019.108553
    Protein kinase D2 (PKD2) is a serine/threonine protein kinase which plays an important role in vesicle fission at the trans-Golgi network (TGN) to coordinate subcellular trafficking with gene expression. We found that in the rat kidney, PKD2 is specifically expressed in collecting duct principal cells predominantly at the apical membrane and with lower basal expression in cytosolic compartments. When rats were maintained on a Na+ depleted diet (<0.87 mmol Na+/kg) to increase plasma aldosterone levels, PKD2 became internalized to a cytoplasmic compartment. Treatment of murine M1 cortical collecting duct (M1-CCD) cells with aldosterone (10 nM) promoted PKD2 co-localization with the trans-Golgi network within 30 min. PKD2 underwent autophosphorylation at Ser876 within 10 min of aldosterone treatment and remained phosphorylated (active) for at least 24 h. A stable PKD2 shRNA knock-down (PKD2 KD) M1-CCD cell line was developed to study the role of PKD2 in epithelial Na+ channel (ENaC) trafficking and transepithelial Na+ transport (SCC) in epithelial monolayers grown in Ussing chambers. The PKD2 KD cells developed transepithelial resistance with kinetics equivalent to wild-type cells, however the transepithelial voltage and Na+ current were significantly elevated in PKD2 knock-down CCD epithelia. The higher basal SCC was due to increased ENaC activity. Aldosterone treatment for 24 h resulted in a decline in ENaC activity in the PKD2 KD cells as opposed to the increase observed in the wild-type cells. The paradoxical inhibition of SCC by aldosterone in PKD2 KD epithelium was attributed to a reduction in ENaC current and lower membrane abundance of ENaC, demonstrating that PKD2 plays a critical tonic role in ENaC trafficking and channel subunit stability. The rapid activation of PKD2 by aldosterone is synergistic with the transcriptional activity of MR and contributes to increased ENaC activity.
  3. Jennings CJ, Murer B, O'Grady A, Hearn LM, Harvey BJ, Kay EW, et al.
    Br. J. Cancer, 2015 Jun 30;113(1):69-75.
    PMID: 26057448 DOI: 10.1038/bjc.2015.187
    Malignant pleural mesothelioma (MPM) is a rare and essentially incurable malignancy most often linked with occupational exposure to asbestos fibres. In common with other malignancies, the development and progression of MPM is associated with extensive dysregulation of cell cycle checkpoint proteins that modulate cell proliferation, apoptosis, DNA repair and senescence.
  4. Jennings CJ, Zainal N, Dahlan IM, Kay EW, Harvey BJ, Thomas W
    Anticancer Res, 2016 11;36(11):5905-5913.
    PMID: 27793915
    Malignant pleural mesothelioma (MPM) is a rare but highly aggressive malignancy most often associated with exposure to asbestos. Recent evidence points to oestrogen receptor (ER)-β having a tumour-suppressor role in MPM progression, and this raises the question of whether selective modulators of ERs could play a role in augmenting MPM therapy.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links