Displaying all 3 publications

Abstract:
Sort:
  1. Steinig EJ, Andersson P, Harris SR, Sarovich DS, Manoharan A, Coupland P, et al.
    BMC Genomics, 2015;16:388.
    PMID: 25981586 DOI: 10.1186/s12864-015-1599-9
    Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of hospital-associated infection, but there is growing awareness of the emergence of multidrug-resistant lineages in community settings around the world. One such lineage is ST772-MRSA-V, which has disseminated globally and is increasingly prevalent in India. Here, we present the complete genome sequence of DAR4145, a strain of the ST772-MRSA-V lineage from India, and investigate its genomic characteristics in regards to antibiotic resistance and virulence factors.
  2. Bryant JM, Harris SR, Parkhill J, Dawson R, Diacon AH, van Helden P, et al.
    Lancet Respir Med, 2013 Dec;1(10):786-92.
    PMID: 24461758 DOI: 10.1016/S2213-2600(13)70231-5
    BACKGROUND: Recurrence of tuberculosis after treatment makes management difficult and is a key factor for determining treatment efficacy. Two processes can cause recurrence: relapse of the primary infection or re-infection with an exogenous strain. Although re-infection can and does occur, its importance to tuberculosis epidemiology and its biological basis is still debated. We used whole-genome sequencing-which is more accurate than conventional typing used to date-to assess the frequency of recurrence and to gain insight into the biological basis of re-infection.

    METHODS: We assessed patients from the REMoxTB trial-a randomised controlled trial of tuberculosis treatment that enrolled previously untreated participants with Mycobacterium tuberculosis infection from Malaysia, South Africa, and Thailand. We did whole-genome sequencing and mycobacterial interspersed repetitive unit-variable number of tandem repeat (MIRU-VNTR) typing of pairs of isolates taken by sputum sampling: one from before treatment and another from either the end of failed treatment at 17 weeks or later or from a recurrent infection. We compared the number and location of SNPs between isolates collected at baseline and recurrence.

    FINDINGS: We assessed 47 pairs of isolates. Whole-genome sequencing identified 33 cases with little genetic distance (0-6 SNPs) between strains, deemed relapses, and three cases for which the genetic distance ranged from 1306 to 1419 SNPs, deemed re-infections. Six cases of relapse and six cases of mixed infection were classified differently by whole-genome sequencing and MIRU-VNTR. We detected five single positive isolates (positive culture followed by at least two negative cultures) without clinical evidence of disease.

    INTERPRETATION: Whole-genome sequencing enables the differentiation of relapse and re-infection cases with greater resolution than do genotyping methods used at present, such as MIRU-VNTR, and provides insights into the biology of recurrence. The additional clarity provided by whole-genome sequencing might have a role in defining endpoints for clinical trials.

    FUNDING: Wellcome Trust, European Union, Medical Research Council, Global Alliance for TB Drug Development, European and Developing Country Clinical Trials Partnership.

  3. Chewapreecha C, Holden MT, Vehkala M, Välimäki N, Yang Z, Harris SR, et al.
    Nat Microbiol, 2017 Jan 23;2:16263.
    PMID: 28112723 DOI: 10.1038/nmicrobiol.2016.263
    The environmental bacterium Burkholderia pseudomallei causes an estimated 165,000 cases of human melioidosis per year worldwide and is also classified as a biothreat agent. We used whole genome sequences of 469 B. pseudomallei isolates from 30 countries collected over 79 years to explore its geographic transmission. Our data point to Australia as an early reservoir, with transmission to Southeast Asia followed by onward transmission to South Asia and East Asia. Repeated reintroductions were observed within the Malay Peninsula and between countries bordered by the Mekong River. Our data support an African origin of the Central and South American isolates with introduction of B. pseudomallei into the Americas between 1650 and 1850, providing a temporal link with the slave trade. We also identified geographically distinct genes/variants in Australasian or Southeast Asian isolates alone, with virulence-associated genes being among those over-represented. This provides a potential explanation for clinical manifestations of melioidosis that are geographically restricted.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links