Displaying all 4 publications

Abstract:
Sort:
  1. Chew ST, Gallagher JB
    Sci Rep, 2018 02 07;8(1):2553.
    PMID: 29416101 DOI: 10.1038/s41598-018-20644-2
    The canopies and roots of seagrass, mangrove, and saltmarsh protect a legacy of buried sedimentary organic carbon from resuspension and remineralisation. This legacy's value, in terms of mitigating anthropogenic emissions of CO2, is based on total organic carbon (TOC) inventories to a depth likely to be disturbed. However, failure to subtract allochthonous recalcitrant carbon overvalues the storage service. Simply put, burial of oxidation-resistant organics formed outside of the ecosystem provides no additional protection from remineralisation. Here, we assess whether black carbon (BC), an allochthonous and recalcitrant form of organic carbon, is contributing to a significant overestimation of blue carbon stocks. To test this supposition, BC and TOC contents were measured in different types of seagrass and mangrove sediment cores across tropical and temperate regimes, with different histories of air pollution and fire together with a reanalysis of published data from a subtropical system. The results suggest current carbon stock estimates are positively biased, particularly for low-organic-content sandy seagrass environs, by 18 ± 3% (±95% confidence interval) and 43 ± 21% (±95% CI) for the temperate and tropical regions respectively. The higher BC fractions appear to originate from atmospheric deposition and substantially enrich the relatively low TOC fraction within these environs.
  2. Gallagher JB, Chuan CH, Yap TK, Fredelina Dona WF
    Biol Lett, 2019 05 31;15(5):20180745.
    PMID: 31064310 DOI: 10.1098/rsbl.2018.0745
    Valuing sedimentary 'blue carbon' stocks of seagrass meadows requires exclusion of allochthonous recalcitrant forms of carbon, such as black carbon (BC). Regression models constructed across a Southeast Asian tropical estuary predicted that carbon stocks within the sandy meadows of coastal embayments would support a modest but not insignificant amount of BC. We tested the prediction across three coastal meadows of the same region: one patchy meadow located close to a major urban centre and two continuous meadows contained in separate open embayments of a rural marine park; all differed in fetch and species. The BC/total organic carbon (TOC) fractions in the urban and rural meadows with small canopies were more than double the predicted amounts, 28 ± 1.6% and 36 ± 1.5% (±95% confidence intervals), respectively. The fraction in the rural large-canopy meadow remained comparable to the other two meadows, 26 ± 4.9% (±95% confidence intervals) but was half the amount predicted, likely owing to confounding of the model. The relatively high BC/TOC fractions were explained by variability across sites of BC atmospheric supply, an increase in loss of seagrass litter close to the exposed edges of meadows and sediment resuspension across the dispersed patchy meadow.
  3. Madin J, Talaha NHM, Lal MTM, Ransangan J, Yoshida T, Gallagher JB
    Zool Stud, 2022;61:e79.
    PMID: 37007816 DOI: 10.6620/ZS.2022.61-79
    Fin whales are a cosmopolitan species found in the largest water masses of the world. In Malaysia, as well as other tropical countries in the Southeast Asian region, literature on fin whales is limited, and as a result, there is confusion regarding their distribution range in the region. This study utilizes the fresh tissue of the skin and blubber of a dead fin whale that was stranded in Sabah (Borneo, Malaysia) on the coast of the South China Sea to confirm the species identity, possible properties of the species' diet, and any trace element contamination. The DNA profile results confirmed that the whale belonged to Balaenoptera physalus. Further investigation of its cytochrome b gene sequence indicated that it was closely related to the southern fin whale (Balaenoptera physalus quoyi). This finding indicates that fin whales indeed migrate to warm tropical waters and that their continuous global distribution spans the equatorial region. The dominant fatty acids, such as C18:0, C16:1, C18:1N9T and C16:0 profiles, were consistent with the pelagic plankton diet that the whale would have had during its migration in the tropical waters of the South China Sea. The whales are likely pelagic feeders and thus need to be offshore, which would explain why they are rarely seen in shallow coastal areas during migration in these waters. The concentrations of K, Ca, Sc, Mg and Al ranged from 0.45 μg g-1 to 7.80 μg g-1, while Cr, Cd, As and Pb were either very low or could not be detected. This is consistent with concentrations of trace elements previously reported for other baleen whale genera from the Southern Ocean. Our study demonstrates the importance of the South China Sea as a migration route for the southern fin whale, since it is a rich food source with relatively low contaminant levels. The South China Sea is therefore well-suited to ensure these whales' survival during migration.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links