Methodology: Adult female Wistar rats were time-mated and grouped into three categories: (a) control-given 0.1 mL of normal saline, (b) low-dose nicotine-given 6.88 mg/ kg/d/0.05 mL, and (c) high-dose nicotine-given 13.76 mg/kg/d/0.1 mL in two divided doses. Treatment was given intraperitoneally from gestational days 2 to 6. On postnatal day 15 (P15), the pups were separated from their mothers, anaesthetised and sacrificed, followed by intracardial perfusion with 4% paraformaldehyde. PFC was excised from the brain and processed for tissue histology, histochemistry, and morphology of brain cells.
Results: Gestational nicotine exposure during the first week of gestation in rats significantly reduced birth weights in nicotine-treated groups compared with control; it, however, accelerated body weights, altered neuronal morphology, and elevated astrocytic count significantly, while oligodendroglial count was slightly increased in the PFC of juvenile rats examined at P15.
Conclusion: These alterations revealed that gestational nicotine exposure before the commencement of the cellular processes involved in brain development negatively affects neurodevelopment, and this could result in neurological dysfunctions in later life.
Objective: This study is aimed at predicting an effective epitope-based vaccine against glycoprotein G of Nipah henipavirus, using immunoinformatics approaches.
Methods and Materials: Glycoprotein G of the Nipah virus sequence was retrieved from NCBI. Different prediction tools were used to analyze the epitopes, namely, BepiPred-2.0: Sequential B Cell Epitope Predictor for B cell and T cell MHC classes II and I. Then, the proposed peptides were docked using Autodock 4.0 software program. Results and Conclusions. The two peptides TVYHCSAVY and FLIDRINWI have showed a very strong binding affinity to MHC class I and MHC class II alleles. Furthermore, considering the conservancy, the affinity, and the population coverage, the peptide FLIDRINWIT is highly suitable to be utilized to formulate a new vaccine against glycoprotein G of Nipah henipavirus. An in vivo study for the proposed peptides is also highly recommended.