Displaying all 2 publications

Abstract:
Sort:
  1. Asmilia N, Fahrimal Y, Abrar M, Rinidar R
    ScientificWorldJournal, 2020;2020:2739056.
    PMID: 32395086 DOI: 10.1155/2020/2739056
    Malacca (Phyllanthus emblica) is one of the plants that is often by the community in the Aceh Besar district of Indonesia as a traditional medicine for the treatment of various diseases such as antimicrobial, antibacterial, antifungals, antivirals, antimutagenic, antimalaria, and antiallergic. This research was conducted to analyze the content of chemical compounds in the ethanol extract of the Malacca leaf (EEDM) using a gas chromatography-mass spectrophotometer (GC-MS). Malacca leaves were extracted by the maceration method using n-hexane, ethyl acetate, and ethanol. The GC-MS analysis showed EEDM contained 22 chemical compounds. The highest chemical content of EEDM is octadecanoic acid reaching 22.93%, 9,12-octadecanoic acid 14.99%, octadecanoic acid 7.59%, 9-hexadecenoic acid 6.17%, octadecanoic acid 5.95%, octadecanal 5.59%, 9,12-octadecanoic acid 5.06%, 3-eicosyne 4.75%, 1-hexadecenoic acid 4.08%, 11-tetradecen-1-ol 2.92%, 2-furanmethanol 2.83%, delta-guaiene 2.43%, cyclohexane 2.13%, hexadecanoic acid 1.99%, sativen 1.87%, octadecanoic acid 1.52%, 1H-cyclopropaanaphthalene 1.40%, tetradecanoic acid 1.40%, 3,7,11-tridecatrienenitrile 1.20%, caryophellene 1.11%, 2H-pyran 1.07%, and trans-caryophellene 1.03%. This study clearly shows the presence of fatty acids which play a major role in the efficacy of these traditional medicines particularly as antioxidant and antimalarial.
  2. Asmilia N, Aliza D, Fahrimal Y, Abrar M, Ashary S
    Vet World, 2020 Jul;13(7):1457-1461.
    PMID: 32848324 DOI: 10.14202/vetworld.2020.1457-1461
    Background and Aim: Although existing research confirms the antiparasitic effect of the Malacca plant against Plasmodium, its effect on the liver, one of the target organs of Plasmodium has not been investigated. Therefore, this study was conducted to explore the potential of the ethanolic extract of Malacca (Phyllanthus emblica) leaves in preventing liver damage in mice (Mus musculus) caused by Plasmodium berghei infection.

    Materials and Methods: This study was conducted using the livers of 18 mice fixed in 10% neutral-buffered formalin. A completely randomized design with a unidirectional pattern comprising six treatments was used in this study, with each treatment consisting of three replications. Treatment 0 was the negative control group infected with P. berghei, treatment 1 was the positive control group infected with P. berghei followed by chloroquine administration at a dose of 5 mg/kg BW, and treatments 2, 3, 4, and 5 were groups infected with P. berghei and administered Malacca leaf ethanolic extracts at doses of 100, 300, 600, and 1200 mg/kg BW, respectively. The extracts were administered orally using a gastric tube for 4 consecutive days. Mice were sacrificed on the 7th day and livers were collected for histopathological examination.

    Results: Histopathological examination of the livers of mice infected with P. berghei demonstrated the presence of hemosiderin, hydropic degeneration, fat degeneration, necrosis, and megalocytosis. However, all these histopathological changes were reduced in the livers of P. berghei-infected mice treated with various doses of Malacca leaf ethanolic extract. The differences between the treatments were found be statistically significant (p<0.05).

    Conclusion: Ethanolic extract of Malacca leaves has the potential to protect against liver damage in mice infected with P. berghei. The dose of 600 mg/kg BW was found to be the most effective compared with the doses of 100, 300, and 1200 mg/kg BW.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links