Displaying all 3 publications

Abstract:
Sort:
  1. Onn LV, Bickle I, Chua HB, Telisinghe PU, Chong CF, Chong VH
    Malays Fam Physician, 2017;12(3):33-36.
    PMID: 29527279
    Urinary tract infection (UTI) is one of the most common presentations in general practice and, in most instances, occurs in a single episode and is easily treated with a course of anti-microbial therapy. In the case of recurrent urinary tract infections, it is important to consider evaluation for any underlying causes. We report the case of a 32 year old female who had recurrent UTIs; this was a case of recurrent UTI secondary to xanthogranulomatous pyelonephritis from renal stones with resultant reno-colic fistula formation.
  2. Lau YJ, Karri RR, Mubarak NM, Lau SY, Chua HB, Khalid M, et al.
    Environ Sci Pollut Res Int, 2020 Nov;27(32):40121-40134.
    PMID: 32656753 DOI: 10.1007/s11356-020-10045-2
    The feasibility and performance of Jicama peroxidase (JP) immobilized Buckypaper/polyvinyl alcohol (BP/PVA) membrane for methylene blue (MB) dye removal was investigated in a customized multi-stage filtration column under batch recycle mode. The effect of independent variables, such as influent flow rate, ratio of H2O2/MB dye concentration, and contact time on the dye removal efficiency, were investigated using response surface methodology (RSM). To capture the inherent characteristics and better predict the removal efficiency, a data-driven adaptive neuro-fuzzy inference system (ANFIS) is implemented. Results indicated that the optimum dye removal efficiency of 99.7% was achieved at a flow rate of 2 mL/min, 75:1 ratio of H2O2/dye concentration with contact time of 183 min. The model predictions of ANFIS are significantly good compared with RSM, thus resulting in R2 values of 0.9912 and 0.9775, respectively. The enzymatic kinetic parameters, Km and Vmax, were evaluated, which are 1.98 mg/L and 0.0219 mg/L/min, respectively. Results showed that JP-immobilized BP/PVA nanocomposite membrane can be promising and cost-effective biotechnology for the practical application in the treatment of industrial dye effluents.
  3. Mohamed Hatta NS, Lau SW, Chua HB, Takeo M, Sen TK, Mubarak NM, et al.
    Environ Res, 2023 May 01;224:115527.
    PMID: 36822539 DOI: 10.1016/j.envres.2023.115527
    Bacterial strains belonging to Citrobacter spp. were reported to produce polysaccharides consisting of N-acetylglucosamine and glucosamine like chitosan, with high flocculation activity. In this work, the flocculation dewatering performance of activated sludge conditioned by a novel cationic chitosan-like bioflocculant (BF) named BF01314, produced from Citrobacter youngae GTC 01314, was evaluated under the influences of flocculant dosage, pH, and temperature. At BF dosage as low as 0.5 kg/t DS, the sludge dewaterability was significantly enhanced in comparison to the raw (untreated) sludge, featuring well-flocculated characteristic (reduction in CST from 22.0 s to 9.4 s) and good sludge filterability with reduced resistance (reduction in SRF by one order from 7.42 × 1011 to 9.59 × 1010 m/kg) and increased compactness of sludge (increase in CSC from 15.2 to 23.2%). Besides, the BF demonstrated comparable high sludge dewatering performance within the pH range between 2 and 8, and temperature range between 25 °C and 80 °C. Comparison between the BF, the pristine chitosan and the commercial cationic copolymer MF 7861 demonstrated equivalent performance with enhanced dewaterability at the dosage between 2.0 and 3.0 kg/t DS. Besides, the BF demonstrated strong flocculation activity (>99%) when added to the sludge suspension using moderate to high flocculation speeds (100-200 rpm) with at least 3-min mixing time. The BF's reaction in sludge flocculation was best fitted with a pseudo first-order kinetic model. Electrostatic charge patching and polymer bridging mechanisms are believed to be the dominant mechanistic phenomena during the BF's sludge conditioning process (coagulation-flocculation).
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links