Displaying publications 1 - 20 of 56 in total

Abstract:
Sort:
  1. Choo SW, Rishik S, Wee WY
    Microb Genom, 2020 12;6(12).
    PMID: 33295861 DOI: 10.1099/mgen.0.000495
    Mycobacteroides immunogenum is an emerging opportunistic pathogen implicated in nosocomial infections. Comparative genome analyses may provide better insights into its genomic structure, functions and evolution. The present analysis showed that M. immunogenum has an open pan-genome. Approximately 36.8% of putative virulence genes were identified in the accessory regions of M. immunogenum. Phylogenetic analyses revealed two potential novel subspecies of M. immunogenum, supported by evidence from ANIb (average nucleotide identity using blast) and GGDC (Genome to Genome Distance Calculator) analyses. We identified 74 genomic islands (GIs) in Subspecies 1 and 23 GIs in Subspecies 2. All Subspecies 2-harboured GIs were not found in Subspecies 1, indicating that they might have been acquired by Subspecies 2 after their divergence. Subspecies 2 has more defence genes than Subspecies 1, suggesting that it might be more resistant to the insertion of foreign DNA and probably explaining why Subspecies 2 has fewer GIs. Positive selection analysis suggest that M. immunogenum has a lower selection pressure compared to non-pathogenic mycobacteria. Thirteen genes were positively selected and many were involved in virulence.
  2. Wee WY, Dutta A, Choo SW
    PLoS One, 2017;12(3):e0172831.
    PMID: 28291784 DOI: 10.1371/journal.pone.0172831
    Mycobacteria a genus of Actinobacteria are widespread in nature ranging from soil-dwelling saprophytes to human and animal pathogens. The rate of growth has been a classifying factor for the Mycobacterium spp., dividing them into the rapid growers and the slow growers. Here we have performed a comparative genome study of mycobacterial species in order to get better understanding of their evolution, particularly to understand the distinction between the rapid and slow growers. Our study shows that the slow growers had generally gained and lost more genes compared to the rapid growers. The slow growers might haved eventually lost genes (LivFGMH operon, shaACDEFG genes and MspA porin) that could contribute to the slow growth rate of the slow growers. The genes gained and lost in mycobacteria had eventually helped these bacteria to adapt to different environments and have led to the evolution of the present day rapid and slow growers. Our results also show high number of Mycobacterium abscessus specific genes (811 genes) and some of them are associated with the known bacterial quorum sensing genes that might be important for Mycobacterium abscessus to adapt and survive in variety of unfavorable environments. Mycobacterium abscessus also does not contains genes involved in the bacterial defense system and together with the quorum sensing genes may have contributed to the high gene gain rate of Mycobacterium abscessus.
  3. Tan JL, Ngeow YF, Choo SW
    J Clin Microbiol, 2015 Sep;53(9):3042-6.
    PMID: 26157149 DOI: 10.1128/JCM.00541-15
    Mycobacterium abscessus subspecies classification has important clinical implications. We used phylogenomic network and amino acid analyses to provide evidence for the separation of Mycobacterium bolletii and Mycobacterium massiliense into two distinct subspecies which can potentially be differentiated rapidly by their protein signatures.
  4. Tay ST, Kho KL, Wee WY, Choo SW
    Acta Trop, 2016 Mar;155:25-33.
    PMID: 26658020 DOI: 10.1016/j.actatropica.2015.11.019
    Bartonella elizabethae has been known to cause endocarditis and neuroretinitis in humans. The genomic features and virulence profiles of a B. elizabethae strain (designated as BeUM) isolated from the spleen of a wild rat in Kuala Lumpur, Malaysia are described in this study. The BeUM strain has a genome size of 1,932,479bp and GC content of 38.3%. There is a high degree of conservation between the genomes of strain BeUM with B. elizabethae type strains (ATCC 49927 and F9251) and a rat-borne strain, Re6043vi. Of 2137 gene clusters identified from B. elizabethae strains, 2064 (96.6%) are indicated as the core gene clusters. Comparative genome analysis of B. elizabethae strains reveals virulence genes which are known in other pathogenic Bartonella species, including VirB2-11, vbhB2-B11, VirD4, trw, vapA2-5, hbpA-E, bepA-F, bepH, badA/vomp/brp, ialB, omp43/89 and korA-B. A putative intact prophage has been identified in the strain BeUM, in addition to a 8kb pathogenicity island. The whole genome analysis supports the zoonotic potential of the rodent-borne B. elizabethae, and provides basis for future functional and pathogenicity studies of B. elizabethae.
  5. Teo WF, Wee WY, Choo SW, Tan GY
    Mar Genomics, 2015 Apr;20:11-2.
    PMID: 25554669 DOI: 10.1016/j.margen.2014.12.006
    The bacterium strain SE31, a member of the genus Sciscionella, was isolated from intertidal sediments collected from Cape Rachado, Malaysia. The high quality draft genome sequence of Sciscionella strain SE31 with a genome size of approximately 7.4 Mbp is reported. Preliminary analysis revealed 46 putative gene clusters involved in the biosynthesis of secondary metabolites and 113 putative genes that are associated with bacterial virulence, disease and defense. Availability of the genome sequence of Sciscionella SE31 will contribute to a better understanding of the genus Sciscionella.
  6. Choo SW, Beh CY, Russell S, White R
    ScientificWorldJournal, 2014;2014:191535.
    PMID: 25389534 DOI: 10.1155/2014/191535
    In Drosophila, protein trap strategies provide powerful approaches for the generation of tagged proteins expressed under endogenous control. Here, we describe expression and functional analysis to evaluate new Ubx and hth protein trap lines generated by the Cambridge Protein Trap project. Both protein traps exhibit spatial and temporal expression patterns consistent with the reported endogenous pattern in the embryo. In imaginal discs, Ubx-YFP is expressed throughout the haltere and 3rd leg imaginal discs, while Hth-YFP is expressed in the proximal regions of haltere and wing discs but not in the pouch region. The Ubx (CPTI000601) line is semilethal as a homozygote. No T3/A1 to T2 transformations were observed in the embryonic cuticle or the developing midgut. The homozygous survivors, however, exhibit a weak haltere phenotype with a few wing-like marginal bristles on the haltere capitellum. Although hth (CPTI000378) is completely lethal as a homozygote, the hth (CPTI000378) /hth (C1) genotype is viable. Using a hth deletion (Df(3R)BSC479) we show that hth (CPTI000378) /Df(3R)BSC479 adults are phenotypically normal. No transformations were observed in hth (CPTI000378), hth (CPTI000378) /hth (C1), or hth (CPTI000378) /Df(3R)BSC479 embryonic cuticles. We have successfully characterised the Ubx-YFP and Hth-YFP protein trap lines demonstrating that the tagged proteins show appropriate expression patterns and produce at least partially functional proteins.
  7. Tan JL, Khang TF, Ngeow YF, Choo SW
    BMC Genomics, 2013;14:879.
    PMID: 24330254 DOI: 10.1186/1471-2164-14-879
    Mycobacterium abscessus is a rapidly growing mycobacterium that is often associated with human infections. The taxonomy of this species has undergone several revisions and is still being debated. In this study, we sequenced the genomes of 12 M. abscessus strains and used phylogenomic analysis to perform subspecies classification.
  8. Wee WY, Tan TK, Jakubovics NS, Choo SW
    PLoS One, 2016;11(3):e0152682.
    PMID: 27031249 DOI: 10.1371/journal.pone.0152682
    Mycobacterium brisbanense is a member of Mycobacterium fortuitum third biovariant complex, which includes rapidly growing Mycobacterium spp. that normally inhabit soil, dust and water, and can sometimes cause respiratory tract infections in humans. We present the first whole-genome analysis of M. brisbanense UM_WWY which was isolated from a 70-year-old Malaysian patient. Molecular phylogenetic analyses confirmed the identification of this strain as M. brisbanense and showed that it has an unusually large genome compared with related mycobacteria. The large genome size of M. brisbanense UM_WWY (~7.7Mbp) is consistent with further findings that this strain has a highly variable genome structure that contains many putative horizontally transferred genomic islands and prophage. Comparative analysis showed that M. brisbanense UM_WWY is the only Mycobacterium species that possesses a complete set of genes encoding enzymes involved in the urea cycle, suggesting that this soil bacterium is able to synthesize urea for use as plant fertilizers. It is likely that M. brisbanense UM_WWY is adapted to live in soil as its primary habitat since the genome contains many genes associated with nitrogen metabolism. Nevertheless, a large number of predicted virulence genes were identified in M. brisbanense UM_WWY that are mostly shared with well-studied mycobacterial pathogens such as Mycobacterium tuberculosis and Mycobacterium abscessus. These findings are consistent with the role of M. brisbanense as an opportunistic pathogen of humans. The whole-genome study of UM_WWY has provided the basis for future work of M. brisbanense.
  9. Wee WY, Dutta A, Jayaraj J, Choo SW
    PLoS One, 2019;14(4):e0214663.
    PMID: 30964891 DOI: 10.1371/journal.pone.0214663
    Mycobacterium cosmeticum is a nontuberculous Mycobacterium recovered from different water sources including household potable water and water collected at nail salon. Individual cases of this bacterium have been reported to be associated with gastrointestinal tract infections. Here we present the first whole-genome study and comparative analysis of two new clinically-derived Mycobacterium sp. UM_RHS (referred as UM_RHS after this) and Mycobacterium sp. UM_NYF (referred as UM_NYF after this) isolated from patients in Indonesia and Malaysia respectively to have a better understanding of the biological characteristic of these isolates. Both strains are likely Mycobacterium cosmeticum as supported by the evidence from molecular phylogenetic, comparative genomic and Average Nucleotide Identity (ANI) analyses. We found the presence of a considerably large number of putative virulence genes in the genomes of UM_RHS and UM_NYF. Interestingly, we also found a horizontally transferred genomic island carrying a putative dsz operon proposing that they may have potential to perform biodesulfization of dibenzothiophene (DBT) that may be effective in cost reduction and air pollution during fuel combustion. This comparative study may provide new insights into M. cosmeticum and serve as an important reference for future functional studies of this bacterial species.
  10. Tan JL, Ngeow YF, Wee WY, Wong GJ, Ng HF, Choo SW
    Sci Rep, 2014;4:7169.
    PMID: 25417557 DOI: 10.1038/srep07169
    Mycobacterium iranicum is a newly reported mycobacterial species. We present the first comparative study of M. iranicum UM_TJL and other mycobacteria. We found M. iranicum to have a close genetic association with environmental mycobacteria infrequently associated with human infections. Nonetheless, UM_TJL is also equipped with many virulence genes (some of which appear to be the consequence of transduction-related gene transfer) that have been identified in established human pathogens. Taken all together, our data suggest that M. iranicum is an environmental bacterium adapted for pathogenicity in the human host. This comparative study provides important clues and forms the basis for future functional studies on this mycobacterium.
  11. Tan JL, Ng HF, Wee WY, Ang MY, Wong GJ, Ngeow YF, et al.
    Genome Announc, 2013;1(5).
    PMID: 24072861 DOI: 10.1128/genomeA.00732-13
    Mycobacterium iranicum is a new species of nontuberculous mycobacterium reported in 2013. Here, we describe the first whole-genome sequence of this species, that of M. iranicum strain UM_TJL, isolated from a patient in Malaysia.
  12. Chan XY, Arumugam R, Choo SW, Yin WF, Chan KG
    Genome Announc, 2013;1(4).
    PMID: 23950114 DOI: 10.1128/genomeA.00540-13
    Tropical seawater harbors a rich diversity of microorganisms as a result of its nutrient-rich environment, constant supply of sufficient sunlight, and warm climate. In this report, we present the complexity of the microbial diversity of the surface seawater of the Georgetown coast as determined using next-generation sequencing technology.
  13. Choo SW, Dutta A, Wong GJ, Wee WY, Ang MY, Siow CC
    PLoS One, 2016;11(4):e0150413.
    PMID: 27035710 DOI: 10.1371/journal.pone.0150413
    Mycobacteria have been reported to cause a wide range of human diseases. We present the first whole-genome study of a Non-Tuberculous Mycobacterium, Mycobacterium sp. UM_CSW (referred to hereafter as UM_CSW), isolated from a patient diagnosed with bronchiectasis. Our data suggest that this clinical isolate is likely a novel mycobacterial species, supported by clear evidence from molecular phylogenetic, comparative genomic, ANI and AAI analyses. UM_CSW is closely related to the Mycobacterium avium complex. While it has characteristic features of an environmental bacterium, it also shows a high pathogenic potential with the presence of a wide variety of putative genes related to bacterial virulence and shares very similar pathogenomic profiles with the known pathogenic mycobacterial species. Thus, we conclude that this possible novel Mycobacterium species should be tightly monitored for its possible causative role in human infections.
  14. Beh CY, El-Sharnouby S, Chatzipli A, Russell S, Choo SW, White R
    PMID: 26753000 DOI: 10.1186/s13072-015-0049-x
    The regulation of specific target genes by transcription factors is central to our understanding of gene network control in developmental and physiological processes yet how target specificity is achieved is still poorly understood. This is well illustrated by the Hox family of transcription factors as their limited in vitro DNA-binding specificity contrasts with their clear in vivo functional specificity.
  15. Tan KY, Dutta A, Tan TK, Hari R, Othman RY, Choo SW
    PeerJ, 2020;8:e9733.
    PMID: 32953261 DOI: 10.7717/peerj.9733
    Background: Paraburkholderia fungorum (P. fungorum) is a Gram-negative environmental species that has been commonly used as a beneficial microorganism in agriculture as an agent for biocontrol and bioremediation. Its use in agriculture is controversial as many people believe that it could harm human health; however, there is no clear evidence to support.

    Methodology: The pangolin P. fungorum (pangolin Pf) genome has a genomic size of approximately 7.7 Mbps with N50 of 69,666 bps. Our study showed that pangolin Pf is a Paraburkholderia fungorum supported by evidence from the core genome SNP-based phylogenetic analysis and the ANI analysis. Functional analysis has shown that the presence of a considerably large number of genes related to stress response, virulence, disease, and defence. Interestingly, we identified different types of secretion systems in the genome of pangolin Pf, which are highly specialized and responsible for a bacterium's response to its environment and in physiological processes such as survival, adhesion, and adaptation. The pangolin Pf also shared some common virulence genes with the known pathogenic member of the Burkholderiales. These genes play important roles in adhesion, motility, and invasion.

    Conclusion: This study may provide better insights into the functions, secretion systems and virulence of this pangolin-associated bacterial strain. The addition of this genome sequence is also important for future comparative analysis and functional work of P. fungorum.

  16. Ang MY, Dutta A, Wee WY, Dymock D, Paterson IC, Choo SW
    Genome Biol Evol, 2016 10 05;8(9):2928-2938.
    PMID: 27540086
    Fusobacterium nucleatum is considered to be a key oral bacterium in recruiting periodontal pathogens into subgingival dental plaque. Currently F. nucleatum can be subdivided into five subspecies. Our previous genome analysis of F. nucleatum W1481 (referred to hereafter as W1481), isolated from an 8-mm periodontal pocket in a patient with chronic periodontitis, suggested the possibility of a new subspecies. To further investigate the biology and relationships of this possible subspecies with other known subspecies, we performed comparative analysis between W1481 and 35 genome sequences represented by the five known Fusobacterium subspecies. Our analyses suggest that W1481 is most likely a new F. nucleatum subspecies, supported by evidence from phylogenetic analyses and maximal unique match indices (MUMi). Interestingly, we found a horizontally transferred W1481-specific genomic island harboring the tripartite ATP-independent (TRAP)-like transporter genes, suggesting this bacterium might have a high-affinity transport system for the C4-dicarboxylates malate, succinate, and fumarate. Moreover, we found virulence genes in the W1481 genome that may provide a strong defense mechanism which might enable it to colonize and survive within the host by evading immune surveillance. This comparative study provides better understanding of F. nucleatum and the basis for future functional work on this important pathogen.
  17. Zheng W, Tan MF, Old LA, Paterson IC, Jakubovics NS, Choo SW
    Sci Rep, 2017 06 07;7(1):2949.
    PMID: 28592797 DOI: 10.1038/s41598-017-02399-4
    Streptococcus gordonii and Streptococcus sanguinis are pioneer colonizers of dental plaque and important agents of bacterial infective endocarditis (IE). To gain a greater understanding of these two closely related species, we performed comparative analyses on 14 new S. gordonii and 5 S. sanguinis strains using various bioinformatics approaches. We revealed S. gordonii and S. sanguinis harbor open pan-genomes and share generally high sequence homology and number of core genes including virulence genes. However, we observed subtle differences in genomic islands and prophages between the species. Comparative pathogenomics analysis identified S. sanguinis strains have genes encoding IgA proteases, mitogenic factor deoxyribonucleases, nickel/cobalt uptake and cobalamin biosynthesis. On the contrary, genomic islands of S. gordonii strains contain additional copies of comCDE quorum-sensing system components involved in genetic competence. Two distinct polysaccharide locus architectures were identified, one of which was exclusively present in S. gordonii strains. The first evidence of genes encoding the CylA and CylB system by the α-haemolytic S. gordonii is presented. This study provides new insights into the genetic distinctions between S. gordonii and S. sanguinis, which yields understanding of tooth surfaces colonization and contributions to dental plaque formation, as well as their potential roles in the pathogenesis of IE.
  18. Tan SY, Tan IK, Tan MF, Dutta A, Choo SW
    Sci Rep, 2016 10 31;6:36116.
    PMID: 27796355 DOI: 10.1038/srep36116
    On record, there are 17 species in the Yersinia genus, of which three are known to be pathogenic to human. While the chromosomal and pYV (or pCD1) plasmid-borne virulence genes as well as pathogenesis of these three species are well studied, their genomic evolution is poorly understood. Our study aims to predict the key evolutionary events that led to the emergence of pathogenic Yersinia species by analyzing gene gain-and-loss, virulence genes, and "Clustered regularly-interspaced short palindromic repeats". Our results suggest that the most recent ancestor shared by the human pathogenic Yersinia was most probably an environmental species that had adapted to the human body. This might have led to ecological specialization that diverged Yersinia into ecotypes and distinct lineages based on differential gene gain-and-loss in different niches. Our data also suggest that Y. pseudotuberculosis group might be the donor of the ail virulence gene to Y. enterocolitica. Hence, we postulate that evolution of human pathogenic Yersinia might not be totally in parallel, but instead, there were lateral gene transfer events. Furthermore, the presence of virulence genes seems to be important for the positive selection of virulence plasmid. Our studies provide better insights into the evolutionary biology of these bacteria.
  19. Mutha NVR, Mohammed WK, Krasnogor N, Tan GYA, Choo SW, Jakubovics NS
    Mol Oral Microbiol, 2018 12;33(6):450-464.
    PMID: 30329223 DOI: 10.1111/omi.12248
    Cell-cell interactions between genetically distinct bacteria, known as coaggregation, are important for the formation of mixed-species biofilms such as dental plaque. Interactions lead to gene regulation in the partner organisms that may be critical for adaptation and survival in mixed-species biofilms. Here, gene regulation responses to coaggregation between Streptococcus gordonii and Fusobacterium nucleatum were studied using dual RNA-Seq. Initially, S. gordonii was shown to coaggregate strongly with F. nucleatum in buffer or human saliva. Using confocal laser scanning microscopy and transmission electron microscopy, cells of different species were shown to be evenly distributed throughout the coaggregate and were closely associated with one another. This distribution was confirmed by serial block face sectioning scanning electron microscopy, which provided high resolution three-dimensional images of coaggregates. Cell-cell sensing responses were analysed 30 minutes after inducing coaggregation in human saliva. By comparison with monocultures, 16 genes were regulated following coaggregation in F. nucleatum whereas 119 genes were regulated in S. gordonii. In both species, genes involved in amino acid and carbohydrate metabolism were strongly affected by coaggregation. In particular, one 8-gene operon in F. nucleatum encoding sialic acid uptake and catabolism was up-regulated 2- to 5-fold following coaggregation. In S. gordonii, a gene cluster encoding functions for phosphotransferase system-mediated uptake of lactose and galactose was down-regulated up to 3-fold in response to coaggregation. The genes identified in this study may play key roles in the development of mixed-species communities and represent potential targets for approaches to control dental plaque accumulation.
  20. El-Sharnouby S, Fischer B, Magbanua JP, Umans B, Flower R, Choo SW, et al.
    PLoS One, 2017;12(3):e0172725.
    PMID: 28282436 DOI: 10.1371/journal.pone.0172725
    It is now well established that eukaryote genomes have a common architectural organization into topologically associated domains (TADs) and evidence is accumulating that this organization plays an important role in gene regulation. However, the mechanisms that partition the genome into TADs and the nature of domain boundaries are still poorly understood. We have investigated boundary regions in the Drosophila genome and find that they can be identified as domains of very low H3K27me3. The genome-wide H3K27me3 profile partitions into two states; very low H3K27me3 identifies Depleted (D) domains that contain housekeeping genes and their regulators such as the histone acetyltransferase-containing NSL complex, whereas domains containing moderate-to-high levels of H3K27me3 (Enriched or E domains) are associated with regulated genes, irrespective of whether they are active or inactive. The D domains correlate with the boundaries of TADs and are enriched in a subset of architectural proteins, particularly Chromator, BEAF-32, and Z4/Putzig. However, rather than being clustered at the borders of these domains, these proteins bind throughout the H3K27me3-depleted regions and are much more strongly associated with the transcription start sites of housekeeping genes than with the H3K27me3 domain boundaries. While we have not demonstrated causality, we suggest that the D domain chromatin state, characterised by very low or absent H3K27me3 and established by housekeeping gene regulators, acts to separate topological domains thereby setting up the domain architecture of the genome.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links