Displaying all 3 publications

Abstract:
Sort:
  1. Ching HS, Luddin N, Rahman IA, Ponnuraj KT
    Curr Stem Cell Res Ther, 2017;12(1):71-79.
    PMID: 27527527
    The odontogenic and osteogenic potential of dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous tooth (SHED) have been shown clearly by various in vitro and in vivo studies. The findings are promising and demonstrated that dental tissue engineering can give a new hope to the individuals suffering from tooth loss and dental diseases. The evaluation of odontogenic and osteogenic differentiation of DPSCs and SHED is commonly carried out by an illustration of the expression of varied related markers. In this review, few commonly used markers such as alkaline phosphatase (ALP), collagen type 1 (Col I), dentin matrix acid phosphoprotein 1 (DMP1), dentin sialophosphoprotein (DSPP), matrix extracellular phosphoglycoprotein (MEPE), osteocalcin (OCN), and osteopontin (OPN). DSPP, DMP1, and MEPE (odontogenic markers), which play an important role during early odontoblastic differentiation and late dentin mineralization, have been highlighted. Osteoblastic proliferation and early/late osteoblastic differentiation can be assessed by estimating the expression of Col I, ALP, OCN and OPN. Despite that, till date, there is no marker which could demonstrate for certain, the differentiation of human DPSCs and SHED towards the odontogenic and osteogenic lineage. This review suggests that SHED are noticeably different from DPSCs and exhibited higher capacity for osteogenic differentiation compared to DPSCs. On the other hand, different expression levels are shown by SHED and DPSCs with regards to the osteoblast markers for osteoblastic differentiation, where, SHED expressed higher levels of ALP, Col I and OCN compared to DPSCs.
  2. Oweity T, Scheithauer BW, Ching HS, Lei C, Wong KP
    J. Neurosurg., 2002 Feb;96(2):344-51.
    PMID: 11838810
    Erdheim-Chester disease (ECD) is a rare multiple system histiocytosis that is characterized pathologically by xanthogranulomatous infiltrates and radiologically by symmetrical sclerosis of long bones. The diagnosis is often confirmed by biopsy of bone or of orbital or retroperitoneal soft tissue. Intracranial involvement is rare. The authors report a case of ECD in which the diagnosis was made after biopsy of a hypothalamic mass. The mass had been discovered during a workup for panhypopituitarism in a 55-year-old man with urological and bone disease. Aside from diabetes insipidus, other features of pituitary insufficiency have seldom been reported and no patients have presented with a hypothalamic tumor. The endocrinological and neurological aspects of ECD are discussed, as is its differential diagnosis. Reported cases of the disorder associated with hypopituitarism or found during biopsy of central nervous system structures are also reviewed.
  3. Ching HS, Luddin N, Kannan TP, Ab Rahman I, Abdul Ghani NRN
    J Esthet Restor Dent, 2018 11;30(6):557-571.
    PMID: 30394667 DOI: 10.1111/jerd.12413
    OBJECTIVE: The aim of this review was to provide an insight about the factors affecting the properties of glass ionomer cements and provides a review regarding studies that are related to modification of glass ionomer cements to improve their properties, particularly on physical-mechanical and antimicrobial activity.

    METHODS: PubMed and Science Direct were searched for papers published between the years 1974 and 2018. The search was restricted to articles written in English related to modification of glass ionomer cements. Only articles published in peer-reviewed journals were included. The search included literature reviews, in vitro, and in vivo studies. Articles written in other languages, without available abstracts and those related to other field were excluded. About 198 peer-review articles in the English language were reviewed.

    CONCLUSION: Based on the finding, most of the modification has improved physical-mechanical properties of glass ionomer cements. Recently, researchers have attempted to improve their antimicrobial properties. However, the attempts were reported to compromise the physical-mechanical properties of modified glass ionomer cements.

    CLINICAL SIGNIFICANCE: As the modification of glass ionomer cement with different material improved the physical-mechanical and antimicrobial properties, it could be used as restorative material for wider application in dentistry.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links