Displaying all 3 publications

Abstract:
Sort:
  1. Oh, J. H., Lim, P. K., Hamzah, S., Tan, C. P., Chan, Sook Wah
    MyJurnal
    Introduction: Diabetes mellitus (DM) is one of the top diseases that lead public health concern in Malaysia. It was believed to rise in number up to 4.5 million on cases by year 2020 based on the current figure. Momordica charantia Linn (MC), a climber belonging to family Cucurbitaceae, is well known in treating diabetic-related conditions. In earlier studies related to the hypoglycemic properties of MC mainly utilized the crude extract, which contain a mixture of bioactives (charantins, insulin-like peptides and alkaloids). Till now, there is no conclusive result on the major bioactives that play role in the hypoglycemic effect of MC and research regarding the charantin purification was not well established. Hence, the objectives of this study were to purify the charantin from MC and to characterize the purified charantin before further subjected to in vivo hypoglycemic study. Methods: The crude was first extracted from MC using ethanol as solvent via Soxhlet extraction following by a series of purification steps via washing, centrifugation, and C-18 cartridges. Results: The HPLC analysis showed that the charantin of purified extract after passing out from the cartridge exuded at 12.50 min with a concentration of 500 ppm, which is relatively 20 times higher than the crude extract (25 ppm). The structural properties of purified charantin were studied using FTIR and it showed strong peaks of carboxylic acids (2884 nm), alcohols (1023 nm) and diethyl ether (1114 nm) as compared
    with the standard. The compound was reconfirmed in LC-MS analysis. The result displayed mass spectrum in positive mode indicates the presence of similar compound in the purified extract and standard charantin, as presented by ion m/z = 300. Conclusion: The charantin was successfully purified from MC and can act as a potent plant-based hypoglycemic agent for diabetes.
  2. Chan SW, Mirhosseini H, Taip FS, Ling TC, Nehdi IA, Tan CP
    Food Sci Biotechnol, 2016;25(Suppl 1):53-62.
    PMID: 30263486 DOI: 10.1007/s10068-016-0098-3
    The present study is aimed to prepare κ-carrageenan microparticles for the encapsulation of model drug, coenzyme Q10 (CoQ10). A face-centered central composite design was employed to study the effects of three different formulation variables (κ-carrageenan, emulsifier, and oil). The powder yield was found inversely affected by the κ-carrageenan and oil concentration. The encapsulation efficiency was maximized in the region of the middle level κ-carrageenan concentration, the high level emulsifier concentration, and the low level oil concentration. The emulsifier concentration was the most influential variable on the particle size of powder. The optimal formulation was reported as 0.91% (w/v) κ-carrageenan concentration, 0.64% (w/v) emulsifier, and 1.0% (w/w) oil. Both differential scanning colorimeter and X-ray diffraction analyses proved that incorporation of CoQ10 into κ- carrageenan microcapsules resulted in amorphous powder with significantly (p<0.05) higher water solubility compared to pure CoQ10 and physical mixture in the crystalline form.
  3. Chan SW, Mahmoud VL, Wang X, Teoh ML, Loh KM, Ng CH, et al.
    PLoS One, 2024;19(11):e0310770.
    PMID: 39509364 DOI: 10.1371/journal.pone.0310770
    Agarwood essential oil (AEO) has gained attention from healthcare industries due to its numerous pharmacological properties. However, a comprehensive understanding of the chemical composition and its cytotoxic property is lacking. The objective of this study was to investigate the chemical profile as well as the cytotoxic concentration range of AEO derived from Aquilaria sinensis agarwood. Gas chromatography-mass spectrometry (GC-MS) was employed to identify the AEO components. Results showed that sesquiterpenes and sesquiterpenoids constitute 95.85% of the AEO. Among the major compounds identified are allo-aromadendrene (13.04%), dihydro-eudesmol (8.81%), α-eudesmol (8.48%), bulnesol (7.63%), τ-cadinol (4.95%), dehydrofukinone (3.83%), valerenol (3.54%), cis-nerolidol (2.75%), agarospirol (2.72%), dehydrojinkoh-eremol (2.53%), selina-3,11-dien-9-al (2.36%), guaiol (2.12%) and caryophyllene oxide (2.0%). The presence of volatile quality marker compounds such as 10-epi-ϒ-eudesmol, aromadendrane, β-agarofuran, α-agarofuran, γ-eudesmol, agarospirol and guaiol, with no contaminants detected, indicates that the extracted AEO is of high purity. Interestingly, the AEO displayed moderate to high toxicity in brine shrimp lethality test (BLST). All studied tumor cell lines (MDA-MB-231, HepG2, B16F10) exhibited varying degrees of sensitivity to AEO, which resulted in time and dose-dependent reduction of cell proliferation. Moreover, flow cytometry analysis revealed that AEO could induce apoptosis in treated HepG2 cells. Our findings showed that AEO contains bioactive components that may be exploited in future studies for the development of anti-cancer therapeutics.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links