Since the discovery of carbon nanotubes (CNTs) in 1991, a fundamental question still remained on how to control morphologically the synthesis of CNTs. This task has always been a challenge. In this paper, we report the results that we have published previously with the aim of sharing the possible controlled synthesis approach via this novel production method. Findings demonstrated that various CNTs could be synthesized by using specially developed supported catalysts from the catalytic decomposition of methane. These synthesized CNTs include carbon nanofibres, single-walled and multi-walled CNTs, Y-junction CNTs and CNTs with special morphologies. It was also revealed that catalyst composition and reaction parameters played an important role in controlling the morphology and type of CNTs formed. The synthesis of CNTs with various morphologies is important because this can enrich the nanostructures of the carbon family. This finding also provides useful data for better understanding of the parameters that govern the growth mechanism of CNTs which may be required in the near future for enhanced controlled synthesis of CNTs.
The functionalization of pristine CNTs is necessary for carbon nanotubes (CNTs) to be fully utilized, with the aim of increasing the nanotube reactivity and solubility in aqueous solutions. In this study, multi-walled carbon nanotubes (MWCNTs) were functionalized with a carboxylic group as this was an important step prior to application. The carboxylic group-functionalization was conducted through acid treatment, using sulphuric and nitric acids mixed at a ratio of 3:1 (v/v) and sonication for 30 min under different temperatures and time durations. The functionalization conditions of 50ºC x 5 h and 60ºC x 3 h were identified to be most suitable for introducing a carboxylic group onto the nanotube surfaces. The percentage of total weight loss due to the carboxylic group on the MWCNTs treated at 50ºC x 5 h and 60ºC x 3 h obtained from the thermogravimetric analysis was 13.26% and 13.76%, respectively. For both samples, peaks corresponding to the carboxylic group were identified in the FT-IR spectra. The changes in the morphology of the treated MWCNTs were also observed under SEM analysis.