Displaying all 4 publications

Abstract:
Sort:
  1. Zheng R, Lai X, Fang C, Lin H, Huang Y, Zheng J, et al.
    Mar Environ Res, 2024 Nov;202:106758.
    PMID: 39305860 DOI: 10.1016/j.marenvres.2024.106758
    Global warming may affect the health of marine species. However, the collected information on quantitative assessment of response in fish under elevated temperature is poorly defined. The present study aimed to quantitatively evaluate the effects of the hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂) under elevated temperature (33 °C and 36 °C, ET1 and ET2) stress for 14 days. As endpoints, we examined changes in body growth, hemato-immunological parameters, liver oxidative stress markers, as well as changes of the stomach digestive enzymes. Compared to the control, the body weight was significantly decreased in ET2 group for 14 d exposure, and a remarkable change of differential leukocyte counts of the fish was observed in ET1 group at 3 d and in ET2 group at 14 d. The respiratory burst activity of the hybrid grouper leukocytes markedly decreased in the treatment groups after 14-d exposure. Overall, the antioxidant enzyme activities and transcriptional levels of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione peroxidase (GSH-PX) were markedly inhibited in the liver for 3-d and 14-d exposure. The expression levels of nf-κb mRNA were significantly inhibited while the expression levels of atp2b1 mRNA were significantly induced after 14-d exposure. The activities of pepsin and lipase in the stomach were significantly reduced. In addition, an innovative hazard classification system (ET-HCS) was developed to quantitatively characterize the stress response of the fish following elevated temperature treatments. The stress level of ET2 group for 14-d exposure was ranked as level IV (high stress), and the other treatments were ranked as level II (low stress). Taken together, the findings of this study further extend our understanding of quantitative assessment of response in fish under high-temperature stress, which provides valuable information for improving countermeasures of mariculture industry.
  2. Chen JC, Fang C, Zheng RH, Hong FK, Jiang YL, Zhang M, et al.
    Mar Environ Res, 2021 May;167:105295.
    PMID: 33714106 DOI: 10.1016/j.marenvres.2021.105295
    Marine biota, especially commercially important species, serves as a basis for human nutrition. However, millions of tons of plastic litter are produced and enter the marine environment every year, with potential adverse impacts on marine organisms. In the present study, we investigated the occurrence and characteristics of microplastic (MP) pollution in the digestive tracts of 13 species of wild nektons from 20 stations sampled in the South China Sea (SCS) and the Indian Ocean (IO), and assessed the human health risks of MPs. The detection rate of MPs ranged from 0.00% to 50.00% from the SCS, which was dramatically lower than that from the IO (10.00-80.00%). The average abundance of MP was 0.18 ± 0.06 items g wet weight-1 (ww-1) in the SCS, which was significantly lower than that in the IO with a concentration of 0.70 ± 0.16 items g ww-1. Most MPs were fibers in type, black in color, and polyester (PES) in polymer composition in both the SCS and IO. Interestingly, distinct profiles of MP pollution were found between the benthic and pelagic nektons: 1) The predominant MP composition was PES in the benthic nektons, whereas polyamide (PA) accounted for a larger part of the total MP count in the pelagic nektons within the SCS; 2) The abundance of MP in the benthic nektons (0.52 ± 0.24 items individual-1) was higher than that in the pelagic nektons (0.30 ± 0.11 items individual-1). Accordingly, the mean hazard score of MPs detected in the benthic nektons (220.66 ± 210.75) was higher than that in the pelagic nektons (49.53 ± 22.87); 3) The mean size of the MP in the pelagic nektons (0.84 ± 0.17 mm) was larger than that in the benthic nektons (0.49 ± 0.09 mm). Our findings highlight the need to further investigate the ecological impacts of MPs on wild nekton, especially commercially important species, and its potential implications for human health.
  3. Arku RE, Brauer M, Ahmed SH, AlHabib KF, Avezum Á, Bo J, et al.
    Environ Pollut, 2020 Jul;262:114197.
    PMID: 32146361 DOI: 10.1016/j.envpol.2020.114197
    Exposure to air pollution has been linked to elevated blood pressure (BP) and hypertension, but most research has focused on short-term (hours, days, or months) exposures at relatively low concentrations. We examined the associations between long-term (3-year average) concentrations of outdoor PM2.5 and household air pollution (HAP) from cooking with solid fuels with BP and hypertension in the Prospective Urban and Rural Epidemiology (PURE) study. Outdoor PM2.5 exposures were estimated at year of enrollment for 137,809 adults aged 35-70 years from 640 urban and rural communities in 21 countries using satellite and ground-based methods. Primary use of solid fuel for cooking was used as an indicator of HAP exposure, with analyses restricted to rural participants (n = 43,313) in 27 study centers in 10 countries. BP was measured following a standardized procedure and associations with air pollution examined with mixed-effect regression models, after adjustment for a comprehensive set of potential confounding factors. Baseline outdoor PM2.5 exposure ranged from 3 to 97 μg/m3 across study communities and was associated with an increased odds ratio (OR) of 1.04 (95% CI: 1.01, 1.07) for hypertension, per 10 μg/m3 increase in concentration. This association demonstrated non-linearity and was strongest for the fourth (PM2.5 > 62 μg/m3) compared to the first (PM2.5 
  4. Yusuf S, Rangarajan S, Teo K, Islam S, Li W, Liu L, et al.
    N Engl J Med, 2014 08 28;371(9):818-27.
    PMID: 25162888 DOI: 10.1056/NEJMoa1311890
    BACKGROUND: More than 80% of deaths from cardiovascular disease are estimated to occur in low-income and middle-income countries, but the reasons are unknown.
    METHODS: We enrolled 156,424 persons from 628 urban and rural communities in 17 countries (3 high-income, 10 middle-income, and 4 low-income countries) and assessed their cardiovascular risk using the INTERHEART Risk Score, a validated score for quantifying risk-factor burden without the use of laboratory testing (with higher scores indicating greater risk-factor burden). Participants were followed for incident cardiovascular disease and death for a mean of 4.1 years.
    RESULTS: The mean INTERHEART Risk Score was highest in high-income countries, intermediate in middle-income countries, and lowest in low-income countries (P<0.001). However, the rates of major cardiovascular events (death from cardiovascular causes, myocardial infarction, stroke, or heart failure) were lower in high-income countries than in middle- and low-income countries (3.99 events per 1000 person-years vs. 5.38 and 6.43 events per 1000 person-years, respectively; P<0.001). Case fatality rates were also lowest in high-income countries (6.5%, 15.9%, and 17.3% in high-, middle-, and low-income countries, respectively; P=0.01). Urban communities had a higher risk-factor burden than rural communities but lower rates of cardiovascular events (4.83 vs. 6.25 events per 1000 person-years, P<0.001) and case fatality rates (13.52% vs. 17.25%, P<0.001). The use of preventive medications and revascularization procedures was significantly more common in high-income countries than in middle- or low-income countries (P<0.001).
    CONCLUSIONS: Although the risk-factor burden was lowest in low-income countries, the rates of major cardiovascular disease and death were substantially higher in low-income countries than in high-income countries. The high burden of risk factors in high-income countries may have been mitigated by better control of risk factors and more frequent use of proven pharmacologic therapies and revascularization. (Funded by the Population Health Research Institute and others.).
    Note: Malaysia is a study site (Author: Yusoff K)
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links