Displaying all 2 publications

Abstract:
Sort:
  1. Agatonovic-Kustrin S, Beresford R, Yusof AP
    J Pharm Biomed Anal, 2001 Sep;26(2):241-54.
    PMID: 11470201
    A quantitative structure-permeability relationship was developed using Artificial Neural Network (ANN) modeling to study penetration across a polydimethylsiloxane membrane. A set of 254 compounds and their experimentally derived maximum steady state flux values used in this study was gathered from the literature. A total of 42 molecular descriptors were calculated for each compound. A genetic algorithm was used to select important molecular descriptors and supervised ANN was used to correlate selected descriptors with the experimentally derived maximum steady-state flux through the polydimethylsiloxane membrane (log J). Calculated molecular descriptors were used as the ANN's inputs and log J as the output. Developed model indicates that molecular shape and size, inter-molecular interactions, hydrogen-bonding capacity of drugs, and conformational stability could be used to predict drug absorption through skin. A 12-descriptor nonlinear computational neural network model has been developed for the estimation of log J values for a data set of 254 drugs. Described model does not require experimental parameters and could potentially provide useful prediction of membrane penetration of new drugs and reduce the need for actual compound synthesis and flux measurements.
  2. Agatonovic-Kustrin S, Beresford R, Yusof AP
    J Pharm Biomed Anal, 2001 May;25(2):227-37.
    PMID: 11275432
    A quantitative structure-human intestinal absorption relationship was developed using artificial neural network (ANN) modeling. A set of 86 drug compounds and their experimentally-derived intestinal absorption values used in this study was gathered from the literature and a total of 57 global molecular descriptors, including constitutional, topological, chemical, geometrical and quantum chemical descriptors, calculated for each compound. A supervised network with radial basis transfer function was used to correlate calculated molecular descriptors with experimentally-derived measures of human intestinal absorption. A genetic algorithm was then used to select important molecular descriptors. Intestinal absorption values (IA%) were used as the ANN's output and calculated molecular descriptors as the inputs. The best genetic neural network (GNN) model with 15 input descriptors was chosen, and the significance of the selected descriptors for intestinal absorption examined. Results obtained with the model that was developed indicate that lipophilicity, conformational stability and inter-molecular interactions (polarity, and hydrogen bonding) have the largest impact on intestinal absorption.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links