Displaying all 6 publications

Abstract:
Sort:
  1. Rozar NM, Razik MA, Sidik MH, Kamarudin S, Ismail MR, Azid A, et al.
    Data Brief, 2020 Aug;31:105858.
    PMID: 32637478 DOI: 10.1016/j.dib.2020.105858
    This research paper provides for the identification of dry bulk terminal efficiencies on the basis of 10 key performance factors in Malaysian ports. Data were collected from 18 dry bulk ports in Malaysia in 2017 through an online questionnaire and distributed via e-mail. The dispersion of the respondents corresponds approximately to the structure of the Malaysian maritime terminal in dry bulk. The data provides port management perceptions towards 10 variables that have been surveyed. Each perception assessed the level of efficiency factors based on a percentage rate of 100%. Efficiency factors in dry bulk terminals have been identified with varying characteristics based on a descriptive analysis table. The dataset presented consists of a brief analysis of all 10 variables involved, including the minimum, maximum, mean, interquartile median and standard deviation. In addition to the descriptive analysis, the normality test and histogram were also performed. Data can be used to measure ports-efficiency factors in another research.
  2. Samsudin MS, Azid A, Khalit SI, Sani MSA, Lananan F
    Mar Pollut Bull, 2019 Apr;141:472-481.
    PMID: 30955758 DOI: 10.1016/j.marpolbul.2019.02.045
    The prediction models of MWQI in mangrove and estuarine zones were constructed. The 2011-2015 data employed in this study entailed 13 parameters from six monitoring stations in West Malaysia. Spatial discriminant analysis (SDA) had recommended seven significant parameters to develop the MWQI which were DO, TSS, O&G, PO4, Cd, Cr and Zn. These selected parameters were then used to develop prediction models for the MWQI using artificial neural network (ANN) and multiple linear regressions (MLR). The SDA-ANN model had higher R2 value for training (0.9044) and validation (0.7113) results than SDA-MLR model and was chosen as the best model in mangrove estuarine zone. The SDA-ANN model had also demonstrated lower RMSE (5.224) than the SDA-MLR (12.7755). In summary, this work suggested that ANN was an effective tool to compute the MWQ in mangrove estuarine zone and a powerful alternative prediction model as compared to the other modelling methods.
  3. Ku Yusof KMK, Ismail SS, Azid A, Sani MSA, Isa NM, Mohamat Zawawi MZ
    Data Brief, 2020 Apr;29:105210.
    PMID: 32071985 DOI: 10.1016/j.dib.2020.105210
    This paper provides detail on sequence analysis of hazy days based on eight monitoring stations from three states (Kelantan, Terengganu and Pahang) in the eastern region of Peninsular Malaysia. The dataset comprises of 1502 daily mean hazy days that had been measured for a decade. The meteorology data namely wind speed, wind direction, air temperature, relative humidity and particulate matter (PM10) were used to comprehend the variability, and the relationship existed amongst variables. The final dataset consists of a summary descriptive analysis and a boxplot, where all five variables were involved, including the minimum, maximum, mean, 1st quartile, median, 3rd quartile and standard deviation are presented. Apart from descriptive analysis, the normality test and histogram were performed as well.
  4. Koki IB, Low KH, Juahir H, Abdul Zali M, Azid A, Zain SM
    Chemosphere, 2018 Mar;195:641-652.
    PMID: 29287272 DOI: 10.1016/j.chemosphere.2017.12.112
    Evaluation of health risks due to heavy metals exposure via drinking water from ex-mining ponds in Klang Valley and Melaka has been conducted. Measurements of As, Cd, Pb, Mn, Fe, Na, Mg, Ca, and dissolved oxygen, pH, electrical conductivity, total dissolved solid, ammoniacal nitrogen, total suspended solid, biological oxygen demand were collected from 12 ex-mining ponds and 9 non-ex-mining lakes. Exploratory analysis identified As, Cd, and Pb as the most representative water quality parameters in the studied areas. The metal exposures were simulated using Monte Carlo methods and the associated health risks were estimated at 95th and 99th percentile. The results revealed that As was the major risk factor which might have originated from the previous mining activity. For Klang Valley, adults that ingested water from those ponds are at both non-carcinogenic and carcinogenic risks, while children are vulnerable to non-carcinogenic risk; for Melaka, only children are vulnerable to As complications. However, dermal exposure showed no potential health consequences on both adult and children groups.
  5. Syed Abdul Mutalib SN, Juahir H, Azid A, Mohd Sharif S, Latif MT, Aris AZ, et al.
    Environ Sci Process Impacts, 2013 Sep;15(9):1717-28.
    PMID: 23831918 DOI: 10.1039/c3em00161j
    The objective of this study is to identify spatial and temporal patterns in the air quality at three selected Malaysian air monitoring stations based on an eleven-year database (January 2000-December 2010). Four statistical methods, Discriminant Analysis (DA), Hierarchical Agglomerative Cluster Analysis (HACA), Principal Component Analysis (PCA) and Artificial Neural Networks (ANNs), were selected to analyze the datasets of five air quality parameters, namely: SO2, NO2, O3, CO and particulate matter with a diameter size of below 10 μm (PM10). The three selected air monitoring stations share the characteristic of being located in highly urbanized areas and are surrounded by a number of industries. The DA results show that spatial characterizations allow successful discrimination between the three stations, while HACA shows the temporal pattern from the monthly and yearly factor analysis which correlates with severe haze episodes that have happened in this country at certain periods of time. The PCA results show that the major source of air pollution is mostly due to the combustion of fossil fuel in motor vehicles and industrial activities. The spatial pattern recognition (S-ANN) results show a better prediction performance in discriminating between the regions, with an excellent percentage of correct classification compared to DA. This study presents the necessity and usefulness of environmetric techniques for the interpretation of large datasets aiming to obtain better information about air quality patterns based on spatial and temporal characterizations at the selected air monitoring stations.
  6. Ismail A, Toriman ME, Juahir H, Zain SM, Habir NL, Retnam A, et al.
    Mar Pollut Bull, 2016 May 15;106(1-2):292-300.
    PMID: 27001716 DOI: 10.1016/j.marpolbul.2015.10.019
    This study presents the determination of the spatial variation and source identification of heavy metal pollution in surface water along the Straits of Malacca using several chemometric techniques. Clustering and discrimination of heavy metal compounds in surface water into two groups (northern and southern regions) are observed according to level of concentrations via the application of chemometric techniques. Principal component analysis (PCA) demonstrates that Cu and Cr dominate the source apportionment in northern region with a total variance of 57.62% and is identified with mining and shipping activities. These are the major contamination contributors in the Straits. Land-based pollution originating from vehicular emission with a total variance of 59.43% is attributed to the high level of Pb concentration in the southern region. The results revealed that one state representing each cluster (northern and southern regions) is significant as the main location for investigating heavy metal concentration in the Straits of Malacca which would save monitoring cost and time.

    CAPSULE: The monitoring of spatial variation and source of heavy metals pollution at the northern and southern regions of the Straits of Malacca, Malaysia, using chemometric analysis.

Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links