Melioidosis is a severe and fatal infectious disease in the tropics and subtropics. It presents as a febrile illness with protean manifestation ranging from chronic localized infection to acute fulminant septicemia with dissemination of infection to multiple organs characterized by abscesses. Pneumonia is the most common clinical presentation. Because of the wide range of clinical presentations, physicians may often misdiagnose and mistreat the disease for tuberculosis, pneumonia or other pyogenic infections. The purpose of this paper is to present common pitfalls in diagnosis and provide optimal approaches to enable early diagnosis and prompt treatment of melioidosis. Melioidosis may occur beyond the boundaries of endemic areas. There is no pathognomonic feature specific to a diagnosis of melioidosis. In endemic areas, physicians need to expand the diagnostic work-up to include melioidosis when confronted with clinical scenarios of pyrexia of unknown origin, progressive pneumonia or sepsis. Radiological imaging is an integral part of the diagnostic workup. Knowledge of the modes of transmission and risk factors will add support in clinically suspected cases to initiate therapy. In situations of clinically highly probable or possible cases where laboratory bacteriological confirmation is not possible, applying evidence-based criteria and empirical treatment with antimicrobials is recommended. It is of prime importance that patients undergo the full course of antimicrobial therapy to avoid relapse and recurrence. Early diagnosis and appropriate management is crucial in reducing serious complications leading to high mortality, and in preventing recurrences of the disease. Thus, there is a crucial need for promoting awareness among physicians at all levels and for improved diagnostic microbiology services. Further, the need for making the disease notifiable and/or initiating melioidosis registries in endemic countries appears to be compelling.
Asia remains vulnerable to new and emerging infectious diseases. Understanding how to improve next generation sequencing (NGS) use in pathogen surveillance is an urgent priority for regional health security. Here we developed a pathogen genomic surveillance assessment framework to assess capacity in low-resource settings in South and Southeast Asia. Data collected between June 2022 and March 2023 from 42 institutions in 13 countries showed pathogen genomics capacity exists, but use is limited and under-resourced. All countries had NGS capacity and seven countries had strategic plans integrating pathogen genomics into wider surveillance efforts. Several pathogens were prioritized for human surveillance, but NGS application to environmental and human-animal interface surveillance was limited. Barriers to NGS implementation include reliance on external funding, supply chain challenges, trained personnel shortages and limited quality assurance mechanisms. Coordinated efforts are required to support national planning, address capacity gaps, enhance quality assurance and facilitate data sharing for decision making.