Displaying all 5 publications

Abstract:
Sort:
  1. Mitchell AE, Boersma J, Anthony A, Kitayama K, Martin TE
    Am Nat, 2020 10;196(4):E110-E118.
    PMID: 32970467 DOI: 10.1086/710151
    AbstractOrganisms living at high elevations generally grow and develop more slowly than those at lower elevations. Slow montane ontogeny is thought to be an evolved adaptation to harsh environments that improves juvenile quality via physiological trade-offs. However, slower montane ontogeny may also reflect proximate influences of harsh weather on parental care and offspring development. We experimentally heated and protected nests from rain to ameliorate harsh montane weather conditions for mountain blackeyes (Chlorocharis emiliae), a montane songbird living at approximately 3,200 m asl in Malaysian Borneo. This experiment was designed to test whether cold and wet montane conditions contribute to parental care and postnatal growth and development rates at high elevations. We found that parents increased provisioning and reduced time spent warming offspring, which grew faster and departed the nest earlier compared with offspring from unmanipulated nests. Earlier departure reduces time-dependent predation risk, benefitting parents and offspring. These plastic responses highlight the importance of proximate weather contributions to broad patterns of montane ontogeny and parental care.
  2. Benavente ED, de Sessions PF, Moon RW, Grainger M, Holder AA, Blackman MJ, et al.
    Int J Parasitol, 2018 03;48(3-4):191-196.
    PMID: 29258833 DOI: 10.1016/j.ijpara.2017.09.008
    Plasmodium knowlesi, a common parasite of macaques, is recognised as a significant cause of human malaria in Malaysia. The P. knowlesi A1H1 line has been adapted to continuous culture in human erythrocytes, successfully providing an in vitro model to study the parasite. We have assembled a reference genome for the PkA1-H.1 line using PacBio long read combined with Illumina short read sequence data. Compared with the H-strain reference, the new reference has improved genome coverage and a novel description of methylation sites. The PkA1-H.1 reference will enhance the capabilities of the in vitro model to improve the understanding of P. knowlesi infection in humans.
  3. Diez Benavente E, Florez de Sessions P, Moon RW, Holder AA, Blackman MJ, Roper C, et al.
    PLoS Genet, 2017 Sep;13(9):e1007008.
    PMID: 28922357 DOI: 10.1371/journal.pgen.1007008
    The macaque parasite Plasmodium knowlesi is a significant concern in Malaysia where cases of human infection are increasing. Parasites infecting humans originate from genetically distinct subpopulations associated with the long-tailed (Macaca fascicularis (Mf)) or pig-tailed macaques (Macaca nemestrina (Mn)). We used a new high-quality reference genome to re-evaluate previously described subpopulations among human and macaque isolates from Malaysian-Borneo and Peninsular-Malaysia. Nuclear genomes were dimorphic, as expected, but new evidence of chromosomal-segment exchanges between subpopulations was found. A large segment on chromosome 8 originating from the Mn subpopulation and containing genes encoding proteins expressed in mosquito-borne parasite stages, was found in Mf genotypes. By contrast, non-recombining organelle genomes partitioned into 3 deeply branched lineages, unlinked with nuclear genomic dimorphism. Subpopulations which diverged in isolation have re-connected, possibly due to deforestation and disruption of wild macaque habitats. The resulting genomic mosaics reveal traits selected by host-vector-parasite interactions in a setting of ecological transition.
  4. Moon RW, Sharaf H, Hastings CH, Ho YS, Nair MB, Rchiad Z, et al.
    Proc Natl Acad Sci U S A, 2016 Jun 28;113(26):7231-6.
    PMID: 27303038 DOI: 10.1073/pnas.1522469113
    The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen.
  5. Amira Khairil Anwar N, Najmi Mohd Nazri M, Rosliza Mohd Adzemi E, Amilda Anthony A, Mohd Azlan M, Balakrishnan V, et al.
    Cytokine, 2024 Jul 22;182:156698.
    PMID: 39042994 DOI: 10.1016/j.cyto.2024.156698
    BACKGROUND: Elevated serum levels of soluble PD-L1 (sPD-L1) have been reported in many cancers; however, there is limited data of sPD-L1 in breast cancer, especially those representing Asian (Malay) women. The purpose of this study was to evaluate sPD-L1 serum levels and analyze its correlation with clinical characteristics in breast cancer patients at Hospital Universiti Sains Malaysia (HUSM).

    METHODS: Blood specimens were obtained from 92 malignant, 16 benign breast cancer patients and 23 healthy controls. The serum concentrations of sPD-L1 were assessed by enzyme-linked immunosorbent assay (ELISA).

    RESULTS: The median serum sPD-L1 concentration of malignant and benign breast cancer patients was significantly elevated compared to the healthy cohorts (12.50 ng/mL vs 13.97 ng/mL vs 8.75 ng/mL, p 

Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links