Displaying all 2 publications

Abstract:
Sort:
  1. Altalib MK, Salim N
    Biomolecules, 2022 Nov 20;12(11).
    PMID: 36421733 DOI: 10.3390/biom12111719
    Information technology has become an integral aspect of the drug development process. The virtual screening process (VS) is a computational technique for screening chemical compounds in a reasonable amount of time and cost. The similarity search is one of the primary tasks in VS that estimates a molecule's similarity. It is predicated on the idea that molecules with similar structures may also have similar activities. Many techniques for comparing the biological similarity between a target compound and each compound in the database have been established. Although the approaches have a strong performance, particularly when dealing with molecules with homogenous active structural, they are not enough good when dealing with structurally heterogeneous compounds. The previous works examined many deep learning methods in the enhanced Siamese similarity model and demonstrated that the Enhanced Siamese Multi-Layer Perceptron similarity model (SMLP) and the Siamese Convolutional Neural Network-one dimension similarity model (SCNN1D) have good outcomes when dealing with structurally heterogeneous molecules. To further improve the retrieval effectiveness of the similarity model, we incorporate the best two models in one hybrid model. The reason is that each method gives good results in some classes, so combining them in one hybrid model may improve the retrieval recall. Many designs of the hybrid models will be tested in this study. Several experiments on real-world data sets were conducted, and the findings demonstrated that the new approaches outperformed the previous method.
  2. Altalib MK, Salim N
    Molecules, 2021 Nov 03;26(21).
    PMID: 34771076 DOI: 10.3390/molecules26216669
    Traditional drug development is a slow and costly process that leads to the production of new drugs. Virtual screening (VS) is a computational procedure that measures the similarity of molecules as one of its primary tasks. Many techniques for capturing the biological similarity between a test compound and a known target ligand have been established in ligand-based virtual screens (LBVSs). However, despite the good performances of the above methods compared to their predecessors, especially when dealing with molecules that have structurally homogenous active elements, they are not satisfied when dealing with molecules that are structurally heterogeneous. The main aim of this study is to improve the performance of similarity searching, especially with molecules that are structurally heterogeneous. The Siamese network will be used due to its capability to deal with complicated data samples in many fields. The Siamese multi-layer perceptron architecture will be enhanced by using two similarity distance layers with one fused layer, then multiple layers will be added after the fusion layer, and then the nodes of the model that contribute less or nothing during inference according to their signal-to-noise ratio values will be pruned. Several benchmark datasets will be used, which are: the MDL Drug Data Report (MDDR-DS1, MDDR-DS2, and MDDR-DS3), the Maximum Unbiased Validation (MUV), and the Directory of Useful Decoys (DUD). The results show the outperformance of the proposed method on standard Tanimoto coefficient (TAN) and other methods. Additionally, it is possible to reduce the number of nodes in the Siamese multilayer perceptron model while still keeping the effectiveness of recall on the same level.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links