AIM OF THE STUDY: This study aims to investigate the anti-obesity and lipid lowering effects of ethanolic extract of C. cauliflora leaves and its major compound (vitexin) in C57BL/6 obese mice induced by high-fat diet (HFD), as well as to further identify the molecular mechanism underlying this action.
METHODS AND MATERIAL: Male C57BL/6 mice were fed with HFD (60% fat) for 16 weeks to become obese. The treatment started during the last 8 weeks of HFD feeding and the obese mice were treated with C. cauliflora leaf extract at 200 and 400 mg/kg/day, orlistat (10 mg/kg) and vitexin (10 mg/kg).
RESULTS: The oral administration of C. cauliflora (400 and 200 mg/kg) and vitexin significantly reduced body weight, adipose tissue and liver weight and lipid accumulation in the liver compared to control HFD group. Both doses of C. cauliflora also significantly (P ≤ 0.05) decreased serum triglyceride, LDL, lipase, IL-6, peptide YY, resistin levels, hyperglycemia, hyperinsulinemia, and hyperleptinemia compared to the control HFD group. Moreover, C. cauliflora significantly up-regulated the expression of adiponectin, Glut4, Mtor, IRS-1 and InsR genes, and significantly decreased the expression of Lepr in white adipose tissue. Furthermore, C. cauliflora significantly up-regulated the expression of hypothalamus Glut4, Mtor and NF-kB genes. GC-MS analysis of C. cauliflora leaves detected the presence of phytol, vitamin E and β-sitosterol. Besides, the phytochemical evaluation of C. cauliflora leaves showed the presence of flavonoid, saponin and phenolic compounds.
CONCLUSION: This study shows interesting outcomes of C. cauliflora against HFD-induced obesity and associated metabolic abnormalities. Therefore, the C. cauliflora extract could be a potentially effective agent for obesity management and its related metabolic disorders such as insulin resistance and hyperlipidemia.
METHODS AND ANALYSIS: The systematic review, will be conducted by extensively searching different databases such as PubMed, Web of Science, Scopus, Wiley and ProQuest to identify randomised controlled trials (with no time frame) which relate to the administration of probiotics to patients with colorectal cancer. The search strategy will include words like colorectal cancer, probiotics, Bifidobacterium, clinical trials etc. A systematic search of databases was performed between 17 and 20 January 2020. Two reviewers will independently review the studies and also search the reference lists of the eligible studies to obtain more references. Data will be extracted from the eligible studies using standardised data extraction form. After assessing the risk of bias, qualitative analysis will be used to synthesise the systematic review.
ETHICS AND DISSEMINATION: This is a protocol for a systematic review; therefore, it doesn't require any ethics approval. We intend to disseminate the protocol in a peer reviewed journal.
MATERIAL AND METHOD: The purity of mitragynine in a Mitragyna speciosa alkaloid extract (MSAE) was determined using Ultra-Fast Liquid Chromatography (UFLC). In vitro high throughput ADMETox studies such as aqueous solubility, plasma protein binding, metabolic stability, permeability and cytotoxicity tests were carried out to analyze the physicochemical properties of MSAE and mitragynine. The UFLC quantification revealed that the purity of mitragynine in the MSAE was 40.9%.
RESULTS: MSAE and mitragynine are highly soluble in aqueous solution at pH 4.0 but less soluble at pH 7.4. A parallel artificial membrane permeability assay demonstrated that it is extensively absorbed through the semi-permeable membrane at pH 7.4 but very poorly at pH 4.0. Both are relatively highly bound to plasma proteins (> 85 % bound) and are metabolically stable to liver microsomes (> 84 % remained unchanged). In comparison to MSAE, mitragynine showed higher cytotoxicity against WRL 68, HepG2 and Clone 9 hepatocytes after 72 h treatment.
CONCLUSION: The obtained ADME and cytotoxicity data demonstrated that both MSAE and mitragynine have poor bioavailability and have the potential to be significantly cytotoxic.