Displaying all 3 publications

Abstract:
Sort:
  1. Alagan A, Jantan I, Kumolosasi E, Azmi N
    Bioinformation, 2019;15(8):535-541.
    PMID: 31719762 DOI: 10.6026/97320630015535
    Phyllanthus amarus Schumach. and Thonn. is a wide spread medicinal herb with various traditional uses. It is well documented for its antioxidant, anti-inflammatory, and hepatoprotective activities. Therefore, it is of interest to evaluate the 80% ethanol extract of Phyllanthus amarus (PA) on spatial memory using the 8-radial arm maze (8-RAM) in mice after induction of neuro inflammation by lipopolysaccharide (LPS) in a 14- and 28-days treatment study. LC-MS/MS was performed to profile the chemical composition in PA extract. Mice were treated orally with 5% v/v tween 20, PA extract (100, 200 and 400 mg/kg), or ibuprofen (IBF 40 mg/kg) for 14 and 28 days. All groups were challenged with LPS (1 mg/kg) via intraperitoneal (i.p.) injection a day prior to the 8-RAM task except for the negative control group which received an i.p. injection of saline. Data obtained were analyzed with one-way ANOVA followed by post hoc Dunnett's test (comparison of all groups against vehicle control). Analysis of LC-MS/MS data revealed the presence of 16 compounds in the PA extract. Administration of PA extract at 200 and 400 mg/kg for 14 and 28 days significantly (*P<0.05) decreased the working and reference memory errors against LPS-induced spatial memory impairment. The observed protective action is possibly due to the putative antineuroinflammatory effects of PA. In conclusion, PA extract possess neuroprotective effects against spatial memory impairment mediated by LPS.
  2. Harikrishnan H, Jantan I, Alagan A, Haque MA
    Inflammopharmacology, 2020 Feb;28(1):1-18.
    PMID: 31792765 DOI: 10.1007/s10787-019-00671-9
    The causal and functional connection between inflammation and cancer has become a subject of much research interest. Modulation of cell signaling pathways, such as those involving mitogen activated protein kinases (MAPKs), nuclear factor kappa β (NF-κB), phosphatidylinositol 3-kinase and protein kinase B (PI3K/Akt), and Wnt, and their outcomes play a fundamental role in inflammation and cancer. Activation of these cell signaling pathways can lead to various aspects of cancer-related inflammation. Hence, compounds able to modulate inflammation-related molecular targets are sought after in anticancer drug development programs. In recent years, plant extracts and their metabolites have been documented with potential in the prevention and treatment of cancer and inflammatory ailments. Plants possessing anticancer and anti-inflammatory properties due to their bioactive constituents have been reported to modulate the molecular and cellular pathways which are related to inflammation and cancer. In this review we focus on the flavonoids (astragalin, kaempferol, quercetin, rutin), lignans (phyllanthin, hypophyllanthin, and niranthin), tannins (corilagin, geraniin, ellagic acid, gallic acid), and triterpenes (lupeol, oleanolic acid, ursolic acid) of Phyllanthus amarus, which exert various anticancer and anti-inflammatory activities via perturbation of the NF-κB, MAPKs, PI3K/Akt, and Wnt signaling networks. Understanding the underlying mechanisms involved may help future research to develop drug candidates for prevention and new treatment for cancer and inflammatory diseases.
  3. Alagan A, Jantan I, Kumolosasi E, Ogawa S, Abdullah MA, Azmi N
    Front Pharmacol, 2019;10:632.
    PMID: 31231221 DOI: 10.3389/fphar.2019.00632
    Background:Phyllanthus amarus (PA) is widely studied for its hepatoprotective properties but has recently received increasing attention due to its diverse anti-inflammatory effects. However, the effects of PA in modulating immune responses in the central nervous system leading to protection against functional changes remain unexplored. Therefore, we sought to examine the protective effects of 80% v/v ethanol extract of PA on lipopolysaccharide (LPS)-induced non-spatial memory impairment and neuroinflammation. Methods: Selected major phytoconstituents of PA extract were identified and quantified using high-performance liquid chromatography. Subchronic neurotoxicity was performed in male Wistar rats given daily oral administration of 100, 200, and 400 mg/kg of the PA extract. Their neurobehavioral activities (functional observation battery and locomotor activity) were scored, and the extracted brains were examined for neuropathological changes. Rats were treated orally with vehicle (5% Tween 20), PA extract (100, 200, and 400 mg/kg), or ibuprofen (IBF; 40 mg/kg) for 14 and 28 days before being subjected to novel object discrimination test. All groups were challenged with LPS (1 mg/kg) given intraperitoneally a day prior to the behavioral tests except for the negative control group. At the end of the behavioral tests, the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, nitric oxide (NO), inducible nitric oxide synthase (iNOS), CD11b/c integrin expression, and synaptophysin immunoreactivity were determined in the brain tissues. Results: Gallic acid, ellagic acid, corilagin, geraniin, niranthin, phyllanthin, hypophyllanthin, phyltetralin, and isonirtetralin were identified in the PA extract. Subchronic administration of PA extract (100, 200, and 400 mg/kg) showed no abnormalities in neurobehavior and brain histology. PA extract administered at 200 and 400 mg/kg for 14 and 28 days effectively protected the rodents from LPS-induced memory impairment. Similar doses significantly (p < 0.05) decreased the release of proteins like TNF-α, IL-1β, and iNOS in the brain tissue. NO levels, CD11b/c integrin expression, and synaptophysin immunoreactivity were also reduced as compared with those in the LPS-challenged group. Conclusion: Pre-treatment with PA extract for 14 and 28 days was comparable with pre-treatment with IBF in prevention of memory impairment and alleviation of neuroinflammatory responses induced by LPS. Further studies are essential to identify the bioactive phytochemicals and the precise underlying mechanisms.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links