Displaying all 2 publications

Abstract:
Sort:
  1. Abdullah SRS, Al-Baldawi IA, Almansoory AF, Purwanti IF, Al-Sbani NH, Sharuddin SSN
    Chemosphere, 2020 May;247:125932.
    PMID: 32069719 DOI: 10.1016/j.chemosphere.2020.125932
    Due to the increasing importance of diesel and petroleum for industrial development during the last century, petrochemical effluents have significantly contributed to the pollution of aquatic and soil environments. The contamination generated by petroleum hydrocarbons can endanger not only humans but also the environment. Phytoremediation or plant-assisted remediation can be considered one of the best technologies to manage petroleum product-contaminated water and soil. The main advantages of this method are that it is environmentally-friendly, potentially cost-effective and does not require specialised equipment. The scope of this review includes a description of hydrocarbon pollutants from petrochemical industries, their toxicity impacts and methods of treatment and degradation. The major emphasis is on phytodegradation (phytotransformation) and rhizodegradation since these mechanisms are the most favourable alternatives for soil and water reclamation of hydrocarbons using tropical plants. In addressing these issues, this review also covers challenges to retrieve the environment (soil and water) from petroleum contaminations through phytoremediation, and its opportunities to remove or reduce the negative environmental impacts of petroleum contaminations and restore damaged ecosystems with sustainable ways to keep healthy life for the future.
  2. Ismail N', Abdullah SRS, Idris M, Kurniawan SB, Effendi Halmi MI, Al Sbani NH, et al.
    J Environ Manage, 2020 Aug 01;267:110643.
    PMID: 32421674 DOI: 10.1016/j.jenvman.2020.110643
    Pilot-scale constructed wetlands planted with Scirpus grossus, were used to investigate the effects of applying a three-rhizobacterial consortium (Bacillus cereus strain NII, Bacillus subtilis strain NII and Brevibacterium sp. strain NII) on the growth of S. grossus and also on the accumulation of iron (Fe) and aluminium (Al) in S. grossus. The experiment includes constructed wetlands with the addition of 2% of the consortium rhizobacteria and without the consortium rhizobacteria addition (acting as control). During each sampling day (0, 5, 10, 15, 20, 25, 30, 42, 72 and 102), plant height, concentration of Fe and Al and sand microbial community were investigated. The results for the constructed wetland with the addition of consortium rhizobacteria showed the growth of S. grossus increased significantly at 26% and 29% for plant height and dry weight, respectively. While the accumulation of Fe and Al in S. grossus were enhanced about 48% and 19% respectively. To conclude, the addition of the rhizobacteria consortium has enhanced both the growth of S. grossus and the metal accumulation. These results suggesting that rhizobacteria has good potential to restore Fe and Al contaminated water in general and particularly for mining wastewater.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links