Different modes of attachment of graphene oxide (GO) on an electrode surface resulted in unusual catalytic behavior respective of attachment because of film thickness. The present work investigates the direct adsorption of GO to the surface of a glassy carbon (GC) electrode. Scanning electron microscopy images revealed that multilayers of GO get adsorbed on the GC substrate and the adsorption was limited by folding up of the GO sheets at their edges. π-π and hydrogen bonding interactions between the GO and GC substrate flagged the adsorption of GO. pH studies revealed that higher adsorption of GO was achieved at pH = 3 rather than at pH = 7 and 10. Even though the electroactive surface area of adsorbed GO (GOads) was not remarkable (0.069 cm2), upon electrochemical reduction of GOads (Er-GOads), the electroactive surface area was escalated to be 0.174 cm2. Similarly, the RCT of Er-GOads was boosted to 2.9 kΩ compared to GOads which is 19 kΩ. Open circuit voltage was recorded to study the adsorption of GO on the GC electrode. Multilayered GO best fitted with the Freundlich adsorption isotherm, and the Freundlich constants like n and KF were found to be 4 and 0.992, respectively. The Freundlich constant "n" revealed the adsorption of GO on the GC substrate to be a physisorption process. Furthermore, the electrocatalytic performance of Er-GOads was demonstrated by taking uric acid as a probe. The modified electrode showed excellent stability toward the determination of uric acid.
Extensive utilization of pesticides and herbicides to boost agricultural production increased the environmental health risks, which can be mitigate with the aid of highly sensitive detection systems. In this study, an electrochemical sensor for monitoring the carcinogenic pesticides in the environmental samples has been developed based on sulfur-doped graphitic-carbon nitride-gold nanoparticles (SCN-AuNPs) nanohybrid. Thermal polycondensation of melamine with thiourea followed by solvent exfoliation via ultrasonication leads to SCN formation and electroless deposition of AuNPs on SCN leads to SCN-AuNPs nanohybrid synthesis. The chemical composition, S-doping, and the morphology of the nanohybrid were confirmed by various microscopic and spectroscopic tools. The as-synthesized nanohybrid was fabricated with glassy carbon (GC) electrode for determining the carcinogenic hydrazine (HZ) and atrazine (ATZ) in field water samples. The present sensor exhibited superior electrocatalytic activity than GC/SCN and GC/AuNPs electrodes due to the synergism between SCN and AuNPs and the amperometric studies showed the good linear range of detection of 20 nM - 0.5 mM and 500 nM - 0.5 mM with the limit of detection of 0.22 and 69 nM (S/N=3) and excellent sensitivity of 1173.5 and 13.96 μA mM-1 cm-2 towards HZ and ATZ, respectively. Ultimately, the present sensor is exploited in environmental samples for monitoring HZ and ATZ and the obtained results are validated with high-performance liquid chromatography (HPLC) technique. The excellent recovery percentage and close agreement with the results of HPLC analysis proved the practicability of the present sensor. In addition, the as-prepared materials were utilized for the photocatalytic degradation of ATZ and the SCN-AuNPs nanohybrid exhibited higher photocatalytic activity with the removal efficiency of 93.6% at 90 min. Finally, the degradation mechanism was investigated and discussed.