Displaying all 5 publications

Abstract:
Sort:
  1. Ahamed F, Song HS, Ho YK
    Biotechnol Bioeng, 2021 05;118(5):1898-1912.
    PMID: 33547803 DOI: 10.1002/bit.27705
    Consolidated bioprocessing (CBP) of cellulose is a cost-effective route to produce valuable biochemicals by integrating saccharification, fermentation and cellulase synthesis in a single step. However, the lack of understanding of governing factors of interdependent saccharification and fermentation in CBP eludes reliable process optimization. Here, we propose a new framework that synergistically couples population balances (to simulate cellulose depolymerization) and cybernetic models (to model enzymatic regulation of fermentation) to enable improved understanding of CBP. The resulting framework, named the unified cybernetic-population balance model (UC-PBM), enables simulation of CBP driven by coordinated control of enzyme synthesis through closed-loop interactions. UC-PBM considers two key aspects in controlling CBP: (1) heterogeneity in cellulose properties and (2) cellular regulation of competing cell growth and cellulase secretion. In a case study on Clostridium thermocellum, UC-PBM not only provides a decent fit with various exometabolomic data, but also reveals that: (i) growth-decoupled cellulase-secreting pathways are only activated during famine conditions to promote the production of growth substrates, and (ii) starting cellulose concentration has a strong influence on the overall flux distribution. Equipped with mechanisms of cellulose degradation and fermentative regulations, UC-PBM is practical to explore phenotypic functions for primary evaluation of microorganisms' potential for metabolic engineering and optimal design of bioprocess.
  2. Lo FF, Kow KW, Kung F, Ahamed F, Kiew PL, Yeap SP, et al.
    Sci Total Environ, 2021 Aug 01;780:146337.
    PMID: 33770606 DOI: 10.1016/j.scitotenv.2021.146337
    Nano-magnetites are widely researched for its potential as an excellent adsorbent in many applications. However, the efficiency of the nano-magnetites are hindered by their tendency to agglomerate. In this work, we dispersed and embedded the nano-magnetites in a porous silica gel matrix to form a nanocomposite to reduce the extent of agglomeration and to enhance the adsorption performance. Our experimental results showed that the removal efficiency of Cu2+ ion has improved by 46% (22.4 ± 2.2%) on the nano-magnetite-silica-gel (NMSG) nanocomposite as compared to pure nano-magnetites (15.3 ± 0.6%). The adsorption capacity is further enhanced by 39% (from 11.2 ± 1.1 to 15.6 ± 1.6 mg/g) by subjecting the NMSG to a magnetic field prior to adsorption. We infer that the magnetic field aligned the magnetic domains within the nano-magnetites, resulting in an increased Lorentz force during adsorption. Similar alignment of magnetic domains is near to impossible in pure nano-magnetites due to severe agglomeration. We further found that the adsorption capacity of the NMSG can be manipulated with an external magnetic field by varying the strength and the configurations of the field. Equipped with proper process design, our finding has great potentials in processes that involve ion-adsorptions, for example, NMSG can: (i) replace/reduce chemical dosing in controlling adsorption kinetics, (ii) replace/reduce complex chemicals required in ion-chromatography columns, and (iii) reduce wastage of nano-adsorbents by immobilizing it in a porous matrix.
  3. Kundu BC, Mohsin GM, Rahman MS, Ahamed F, Mahato AK, Hossain KMD, et al.
    Braz J Biol, 2022;84:e255605.
    PMID: 35019109 DOI: 10.1590/1519-6984.255605
    Combining ability analysis provides useful information for the selection of parents, also information regarding the nature and magnitude of involved gene actions. Crops improvement involves strategies for enhancing yield potentiality and quality components. Targeting the improvement of respective characters in bitter gourd, combining ability and genetic parameters for 19 characters were estimated from a 6×6 full diallel analysis technique. The results revealed that the variances due to general combining ability (GCA) and specific combining ability (SCA) were highly significant for most of the important characters. It indicated the importance of both additive and non-additive gene actions. GCA variances were higher in magnitude than SCA variances for all the characters studied indicating the predominance of the additive gene effects in their inheritance. The parent P2 (BG 009) appeared as the best general combiner for earliness; P1 (BG 006) for number of fruits, average single fruit weight and fruit yield; P4 (BG 027) for node number of first female flower and days to seed fruit maturity; P3 (BG 011) for fruit length and thickness of the fruit flesh; P5 (BG 033) for 100-seed weight; and P6 for number of nodes per main vine. The SCA effect as well as reciprocal effect was also significant for most of the important characters in different crosses.
  4. Mujafarkani N, Ahamed FMM, Babu KS, Debnath S, Sayed AA, Albadrani GM, et al.
    Heliyon, 2023 Oct;9(10):e20459.
    PMID: 37810859 DOI: 10.1016/j.heliyon.2023.e20459
    In an innovative approach to push the boundaries of antimicrobial and antioxidant strategies, we present the synthesis and characterization of a novel terpolymer derived from N-Phenyl-p-phenylenediamine and 2-aminopyrimidine with formaldehyde in the presence of dimethylformamide as a reaction medium through polycondensation technique. Leveraging this terpolymer as a ligand, we introduce an intriguing terpolymer-metal complex, created with Ni (II) metal ion. In our pursuit to validate the structure and properties of these substances, we performed meticulous characterizations using important spectral studies such as FTIR, electronic, and 1H NMR spectroscopy. This provided us with a unique fingerprint for the (N-Phenyl-p-phenylenediamine-2-aminopyrimidine-formaldehyde) terpolymeric ligand (PAF) and its metal complex. In addition, the molecular weights of PAF terpolymer were established using gel permeation chromatography. Upon investigation, PAF terpolymer and PAF-Ni complex exhibited impressive antimicrobial activity, tested by the disc-diffusion technique. Both demonstrated potency against a range of harmful bacterial and fungal strains, including Staphylococcus aureus, Escherichia coli, Candida albicans, and Aspergillus niger. In an extension to their biological applications, we evaluated the free radical scavenging activity of PAF terpolymer and PAF-Ni complex using the DPPH assay. The complex PAF-Ni showcased an enhanced scavenging activity 73.94% (IC50 = 17.58) compared to the ligand PAF 63.06% (IC50 = 27.61) at 100 μg/ml indicating its potential role in oxidative stress management.
  5. Ahamed FMM, Padusha MSA, Banu AM, Maitra S, Alharbi HM, Kumarasamy V, et al.
    BMC Chem, 2024 May 10;18(1):98.
    PMID: 38730412 DOI: 10.1186/s13065-024-01123-4
    The pursuit of advanced multifunctional compounds has gained significant momentum in recent scientific endeavours. This study is dedicated to elucidating the synthesis, rigorous characterization, and multifaceted applications-encompassing anti-corrosion, antimicrobial, and antioxidant properties-of Diethyl 4-(5-bromo-1H-indol-3-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate. The 1,4-dihydropyridine derivative was meticulously synthesized through a strategic reaction of ethyl acetoacetate, ammonium acetate, and 5-bromoindole-3-carboxaldehydein the ethanol medium at 60  C. Subsequent spectral validations were conducted using sophisticated techniques, namely FTIR, NMR, and Mass spectrometry, resulting in data that perfectly resonated with the hypothesized chemical structure of the compound. Its anti-corrosive potential was assessed on mild steel subjected to an aggressive acidic environment, employing comprehensive methodologies like gravimetric analysis, Tafel polarization, and EIS. Concurrently, its antimicrobial prowess was ascertained against a spectrum of bacterial and fungal pathogens viz., Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas, Candida albicansandAspergillusniger, leveraging the disc diffusion method and using Gentamicin as a reference standard.The empirical results illustrated a substantial decrement in corrosion rates with ascending concentrations of the organic compound, achieving an apex of anti-corrosive efficacy at 81.89% for a concentration of 2 × 103 M. Furthermore, the compound outperformed Gentamicin in antimicrobial screenings, manifesting superior efficacy against all tested pathogens. The antioxidant potential, quantified using the DPPH free radical scavenging assay against ascorbic acid as a benchmark, was found to have an IC50 value of 113.964 ± 0.076 µg/ml.This comprehensive investigation accentuates the paramount potential of the synthesized dihydropyridine derivative in diverse domains-from industrial applications as a corrosion inhibitor to therapeutic avenues given its pronounced antimicrobial and antioxidant capabilities. The compelling results obtained pave the way for expansive research and development initiatives cantered around this multifaceted compound.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links