Displaying all 4 publications

Abstract:
Sort:
  1. Abunama T, Othman F, Younes MK
    Environ Monit Assess, 2018 Sep 20;190(10):597.
    PMID: 30238169 DOI: 10.1007/s10661-018-6966-y
    Landfill leachate is one of the sources of surface water pollution in Selangor State (SS), Malaysia. Leachate volume prediction is essential for sustainable waste management and leachate treatment processes. The accurate estimation of leachate generation rates is often considered a challenge, especially in developing countries, due to the lack of reliable data and high measurement costs. Leachate generation is related to several variable factors, including meteorological data, waste generation rates, and landfill design conditions. Large variations in these factors lead to complicated leachate modeling processes. The aims of this study are to determine the key elements contributing to leachate production and then develop an adaptive neural fuzzy inference system (ANFIS) model to predict leachate generation rates. Accuracy of the final model performance was tested and evaluated using the root mean square error (RMSE), the mean absolute error (MAE), and the correlation coefficient (R). The study results defined dumped waste quantity, rainfall level, and emanated gases as the most significant contributing factors in leachate generation. The best model structure consisted of two triangular fuzzy membership functions and a hybrid training algorithm with eight fuzzy rules. The proposed ANFIS model showed a good performance with an overall correlation coefficient of 0.952.
  2. Ansari M, Othman F, Abunama T, El-Shafie A
    Environ Sci Pollut Res Int, 2018 Apr;25(12):12139-12149.
    PMID: 29455350 DOI: 10.1007/s11356-018-1438-z
    The function of a sewage treatment plant is to treat the sewage to acceptable standards before being discharged into the receiving waters. To design and operate such plants, it is necessary to measure and predict the influent flow rate. In this research, the influent flow rate of a sewage treatment plant (STP) was modelled and predicted by autoregressive integrated moving average (ARIMA), nonlinear autoregressive network (NAR) and support vector machine (SVM) regression time series algorithms. To evaluate the models' accuracy, the root mean square error (RMSE) and coefficient of determination (R2) were calculated as initial assessment measures, while relative error (RE), peak flow criterion (PFC) and low flow criterion (LFC) were calculated as final evaluation measures to demonstrate the detailed accuracy of the selected models. An integrated model was developed based on the individual models' prediction ability for low, average and peak flow. An initial assessment of the results showed that the ARIMA model was the least accurate and the NAR model was the most accurate. The RE results also prove that the SVM model's frequency of errors above 10% or below - 10% was greater than the NAR model's. The influent was also forecasted up to 44 weeks ahead by both models. The graphical results indicate that the NAR model made better predictions than the SVM model. The final evaluation of NAR and SVM demonstrated that SVM made better predictions at peak flow and NAR fit well for low and average inflow ranges. The integrated model developed includes the NAR model for low and average influent and the SVM model for peak inflow.
  3. Abunama T, Othman F, Ansari M, El-Shafie A
    Environ Sci Pollut Res Int, 2019 Feb;26(4):3368-3381.
    PMID: 30511225 DOI: 10.1007/s11356-018-3749-5
    Leachate is one of the main surface water pollution sources in Selangor State (SS), Malaysia. The prediction of leachate amounts is elementary in sustainable waste management and leachate treatment processes, before discharging to surrounding environment. In developing countries, the accurate evaluation of leachate generation rates has often considered a challenge due to the lack of reliable data and high measurement costs. Leachate generation is related to several factors, including meteorological data, waste generation rates, and landfill design conditions. The high variations in these factors lead to complicating leachate modeling processes. This study aims at identifying the key elements contributing to leachate production and developing various AI-based models to predict leachate generation rates. These models included Artificial Neural Network (ANN)-Multi-linear perceptron (MLP) with single and double hidden layers, and support vector machine (SVM) regression time series algorithms. Various performance measures were applied to evaluate the developed model's accuracy. In this study, input optimization process showed that three inputs were acceptable for modeling the leachate generation rates, namely dumped waste quantity, rainfall level, and emanated gases. The initial performance analysis showed that ANN-MLP2 model-which applies two hidden layers-achieved the best performance, then followed by ANN-MLP1 model-which applies one hidden layer and three inputs-while SVM model gave the lowest performance. Ranges and frequency of relative error (RE%) also demonstrate that ANN-MLP models outperformed SVM models. Furthermore, low and peak flow criterion (LFC and PFC) assessment of leachate inflow values in ANN-MLP model with two hidden layers made more accurate values than other models. Since minimizing data collection and processing efforts as well as minimizing modeling complexity are critical in the hydrological modeling process, the applied input optimization process and the developed models in this study were able to provide a good performance in the modeling of leachate generation efficiently.
  4. Abunama T, Ansari M, Awolusi OO, Gani KM, Kumari S, Bux F
    J Environ Manage, 2021 Sep 01;293:112862.
    PMID: 34049159 DOI: 10.1016/j.jenvman.2021.112862
    To ensure the safe discharge of treated wastewater to the environment, continuous efforts are vital to enhance the modelling accuracy of wastewater treatment plants (WWTPs) through utilizing state-of-art techniques and algorithms. The integration of metaheuristic modern optimization algorithms that are natlurally inspired with the Fussy Inference Systems (FIS) to improve the modelling performance is a promising and mathematically suitable approach. This study integrates four population-based algorithms, namely: Particle swarm optimization (PSO), Genetic algorithm (GA), Hybrid GA-PSO, and Mutating invasive weed optimization (M-IWO) with FIS system. A full-scale WWTP in South Africa (SA) was selected to assess the validity of the proposed algorithms, where six wastewater effluent parameters were modeled, i.e., Alkalinity (ALK), Sulphate (SLP), Phosphate (PHS), Total Kjeldahl Nitrogen (TKN), Total Suspended Solids (TSS), and Chemical Oxygen Demand (COD). The results from this study showed that the hybrid PSO-GA algorithm outperforms the PSO and GA algorithms when used individually, in modelling all wastewater effluent parameters. PSO performed better for SLP and TKN compared to GA, while the M-IWO algorithm failed to provide an acceptable modelling convergence for all the studied parameters. However, three out of four algorithms applied in this study proven beneficial to be optimized in enhancing the modelling accuracy of wastewater quality parameters.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links