Displaying all 8 publications

Abstract:
Sort:
  1. Talukdar P, Dutta D, Ghosh E, Bose I, Bhattacharjee S
    Appl Biochem Biotechnol, 2023 Apr;195(4):2451-2462.
    PMID: 36656534 DOI: 10.1007/s12010-022-04300-0
    Viral diseases are causing mayhem throughout the world. One of the zoonotic viruses that have emerged as a potent threat to community health in the past few decades is Nipah virus. Nipah viral sickness is a zoonotic disease whose main carrier is bat. This disease is caused by Nipah virus (NiV). It belongs to the henipavirous group and of the family paramyxoviridae. Predominantly Pteropus spp. is the carrier of this virus. It was first reported from the Kampung Sungai Nipah town of Malaysia in 1998. Human-to-human transmission can also occur. Several repeated outbreaks were reported from South and Southeast Asia in the recent past. In humans, the disease is responsible for rapid development of acute illness, which can result in severe respiratory illness and serious encephalitis. Therefore, this calls for an urgent need for health authorities to conduct clinical trials to establish possible treatment regimens to prevent any further outbreaks.
    Matched MeSH terms: Zoonoses/prevention & control
  2. Alam AM
    Clin Med (Lond), 2022 Jul;22(4):348-352.
    PMID: 35760448 DOI: 10.7861/clinmed.2022-0166
    Nipah virus is an acute febrile illness that can cause fatal encephalitis. It is an emerging zoonotic paramyxovirus endemic to south-east Asia and the western Pacific, and can be transmitted by its primary reservoir of fruit bats, through intermediate animal vectors and by human-to-human spread. Outbreaks of Nipah virus encephalitis have occurred in Malaysia, Singapore, Philippines, India and Bangladesh, with the most recent outbreak occurring in Kerala, India in late 2021. Extremely high case fatality rates have been reported from these outbreaks, and to date no vaccines or therapeutic management options are available. Combining this with its propensity to present non-specifically, Nipah virus encephalitis presents a challenging diagnosis that should not be missed in patients returning from endemic regions. Raising awareness of the epidemiology, clinical presentation and risk factors of contracting Nipah virus is vital to recognise and manage potential outbreaks of this disease in the UK.
    Matched MeSH terms: Zoonoses/prevention & control
  3. Broder CC, Weir DL, Reid PA
    Vaccine, 2016 06 24;34(30):3525-34.
    PMID: 27154393 DOI: 10.1016/j.vaccine.2016.03.075
    Hendra virus (HeV) and Nipah virus (NiV) are zoonotic viruses that emerged in the mid to late 1990s causing disease outbreaks in livestock and people. HeV appeared in Queensland, Australia in 1994 causing a severe respiratory disease in horses along with a human case fatality. NiV emerged a few years later in Malaysia and Singapore in 1998-1999 causing a large outbreak of encephalitis with high mortality in people and also respiratory disease in pigs which served as amplifying hosts. The key pathological elements of HeV and NiV infection in several species of mammals, and also in people, are a severe systemic and often fatal neurologic and/or respiratory disease. In people, both HeV and NiV are also capable of causing relapsed encephalitis following recovery from an acute infection. The known reservoir hosts of HeV and NiV are several species of pteropid fruit bats. Spillovers of HeV into horses continue to occur in Australia and NiV has caused outbreaks in people in Bangladesh and India nearly annually since 2001, making HeV and NiV important transboundary biological threats. NiV in particular possesses several features that underscore its potential as a pandemic threat, including its ability to infect humans directly from natural reservoirs or indirectly from other susceptible animals, along with a capacity of limited human-to-human transmission. Several HeV and NiV animal challenge models have been developed which have facilitated an understanding of pathogenesis and allowed for the successful development of both active and passive immunization countermeasures.
    Matched MeSH terms: Zoonoses/prevention & control
  4. A P, Bd A, Wm Z, S MN, S S, Tj TZ, et al.
    PMID: 30388737 DOI: 10.3390/ijerph15112425
    BACKGROUND: Leptospirosis is a zoonotic disease with a worldwide distribution, especially in developing countries such as Malaysia. This study was designed to explore the knowledge, attitudes, beliefs and practices (KABP) toward leptospirosis among the communities in northeastern Malaysia and to determine the sociodemographic factors associated with the KABP toward leptospirosis. A cross-sectional study using a stratified sampling method was conducted among 214 individuals in four locales in northeastern Malaysia.

    METHODS: A cross-sectional study was conducted among 214 respondents in northeastern Malaysia using a multi-stage stratified random sampling method. The study population was divided into two groups based on geographical locations: urban and rural. All data were entered and analyzed using the IBM Statistics for Social Sciences (SPSS) version 22.0 software for Windows (IBM, Armonk, NY, USA). The continuous variables were presented using mean and standard deviation (SD), whereas the categorical variables were described using frequency and percentage. Multiple logistic regression was performed to determine the associated factors for good KABP toward leptospirosis among the respondents.

    RESULTS: It was found that 52.8% of respondents had good knowledge, 84.6% had positive attitudes, 59.8% had positive beliefs, and 53.7% had satisfactory practices. There were no significant sociodemographic factors associated with knowledge and practice, except for educational status, which was significant in the attitude and belief domains. Those with higher education exhibited better attitudes (Odds Ratio (OR) 3.329; 95% Coefficient Interval (CI): 1.140, 9.723; p = 0.028) and beliefs (OR 3.748; 95% CI: 1.485, 9.459; p = 0.005). The communities in northeastern Malaysia generally have good knowledge and a high level of positive attitude; however, this attitude cannot be transformed into practice as the number of people with satisfactory practice habits is much lower compared to those with positive attitudes. As for the belief domain, the communities must have positive beliefs to perceive the threat of the disease.

    CONCLUSIONS: Our current health program on preventing leptospirosis is good in creating awareness and a positive attitude among the communities, but is not sufficient in promoting satisfactory practice habits. In conclusion, more attention needs to be paid to promoting satisfactory practice habits among the communities, as they already possess good knowledge and positive attitudes and beliefs.

    Matched MeSH terms: Zoonoses/prevention & control*
  5. Lappan S, Malaivijitnond S, Radhakrishna S, Riley EP, Ruppert N
    Am J Primatol, 2020 Aug;82(8):e23176.
    PMID: 32686188 DOI: 10.1002/ajp.23176
    The emergence of SARS-CoV-2 in late 2019 and human responses to the resulting COVID-19 pandemic in early 2020 have rapidly changed many aspects of human behavior, including our interactions with wildlife. In this commentary, we identify challenges and opportunities at human-primate interfaces in light of COVID-19, focusing on examples from Asia, and make recommendations for researchers working with wild primates to reduce zoonosis risk and leverage research opportunities. First, we briefly review the evidence for zoonotic origins of SARS-CoV-2 and discuss risks of zoonosis at the human-primate interface. We then identify challenges that the pandemic has caused for primates, including reduced nutrition, increased intraspecific competition, and increased poaching risk, as well as challenges facing primatologists, including lost research opportunities. Subsequently, we highlight opportunities arising from pandemic-related lockdowns and public health messaging, including opportunities to reduce the intensity of problematic human-primate interfaces, opportunities to reduce the risk of zoonosis between humans and primates, opportunities to reduce legal and illegal trade in primates, new opportunities for research on human-primate interfaces, and opportunities for community education. Finally, we recommend specific actions that primatologists should take to reduce contact and aggression between humans and primates, to reduce demand for primates as pets, to reduce risks of zoonosis in the context of field research, and to improve understanding of human-primate interfaces. Reducing the risk of zoonosis and promoting the well-being of humans and primates at our interfaces will require substantial changes from "business as usual." We encourage primatologists to help lead the way.
    Matched MeSH terms: Zoonoses/prevention & control*
  6. Tabasi M, Alesheikh AA, Sofizadeh A, Saeidian B, Pradhan B, AlAmri A
    Parasit Vectors, 2020 Nov 11;13(1):572.
    PMID: 33176858 DOI: 10.1186/s13071-020-04447-x
    BACKGROUND: Zoonotic cutaneous leishmaniasis (ZCL) is a neglected tropical disease worldwide, especially the Middle East. Although previous works attempt to model the ZCL spread using various environmental factors, the interactions between vectors (Phlebotomus papatasi), reservoir hosts, humans, and the environment can affect its spread. Considering all of these aspects is not a trivial task.

    METHODS: An agent-based model (ABM) is a relatively new approach that provides a framework for analyzing the heterogeneity of the interactions, along with biological and environmental factors in such complex systems. The objective of this research is to design and develop an ABM that uses Geospatial Information System (GIS) capabilities, biological behaviors of vectors and reservoir hosts, and an improved Susceptible-Exposed-Infected-Recovered (SEIR) epidemic model to explore the spread of ZCL. Various scenarios were implemented to analyze the future ZCL spreads in different parts of Maraveh Tappeh County, in the northeast region of Golestan Province in northeastern Iran, with alternative socio-ecological conditions.

    RESULTS: The results confirmed that the spread of the disease arises principally in the desert, low altitude areas, and riverside population centers. The outcomes also showed that the restricting movement of humans reduces the severity of the transmission. Moreover, the spread of ZCL has a particular temporal pattern, since the most prevalent cases occurred in the fall. The evaluation test also showed the similarity between the results and the reported spatiotemporal trends.

    CONCLUSIONS: This study demonstrates the capability and efficiency of ABM to model and predict the spread of ZCL. The results of the presented approach can be considered as a guide for public health management and controlling the vector population .

    Matched MeSH terms: Zoonoses/prevention & control
  7. Shearer FM, Huang Z, Weiss DJ, Wiebe A, Gibson HS, Battle KE, et al.
    PLoS Negl Trop Dis, 2016 Aug;10(8):e0004915.
    PMID: 27494405 DOI: 10.1371/journal.pntd.0004915
    BACKGROUND: Infection by the simian malaria parasite, Plasmodium knowlesi, can lead to severe and fatal disease in humans, and is the most common cause of malaria in parts of Malaysia. Despite being a serious public health concern, the geographical distribution of P. knowlesi malaria risk is poorly understood because the parasite is often misidentified as one of the human malarias. Human cases have been confirmed in at least nine Southeast Asian countries, many of which are making progress towards eliminating the human malarias. Understanding the geographical distribution of P. knowlesi is important for identifying areas where malaria transmission will continue after the human malarias have been eliminated.

    METHODOLOGY/PRINCIPAL FINDINGS: A total of 439 records of P. knowlesi infections in humans, macaque reservoir and vector species were collated. To predict spatial variation in disease risk, a model was fitted using records from countries where the infection data coverage is high. Predictions were then made throughout Southeast Asia, including regions where infection data are sparse. The resulting map predicts areas of high risk for P. knowlesi infection in a number of countries that are forecast to be malaria-free by 2025 (Malaysia, Cambodia, Thailand and Vietnam) as well as countries projected to be eliminating malaria (Myanmar, Laos, Indonesia and the Philippines).

    CONCLUSIONS/SIGNIFICANCE: We have produced the first map of P. knowlesi malaria risk, at a fine-scale resolution, to identify priority areas for surveillance based on regions with sparse data and high estimated risk. Our map provides an initial evidence base to better understand the spatial distribution of this disease and its potential wider contribution to malaria incidence. Considering malaria elimination goals, areas for prioritised surveillance are identified.

    Matched MeSH terms: Zoonoses/prevention & control
  8. Bala JA, Balakrishnan KN, Abdullah AA, Mohamed R, Haron AW, Jesse FFA, et al.
    Microb Pathog, 2018 Jul;120:55-63.
    PMID: 29709684 DOI: 10.1016/j.micpath.2018.04.057
    Orf disease is known to be enzootic among small ruminants in Asia, Africa, and some other parts of the world. The disease caused by orf virus is highly contagious among small ruminant species. Unfortunately, it has been neglected for decades because of the general belief that it only causes a self-limiting disease. On the other hand, in the past it has been reported to cause huge cumulative financial losses in livestock farming. Orf disease is characterized by localized proliferative and persistent skin nodule lesions that can be classified into three forms: generalized, labial and mammary or genitals. It can manifest as benign or malignant types. The later type of orf can remain persistent, often fatal and usually causes a serious outbreak among small ruminant population. Morbidity and mortality rates of orf are higher especially in newly infected kids and lambs. Application of antibiotics together with antipyretic and/or analgesic is highly recommended as a supportive disease management strategy for prevention of subsequent secondary microbial invasion. The presence of various exotic orf virus strains of different origin has been reported in many countries mostly due to poorly controlled cross-border virus transmission. There have been several efforts to develop orf virus vaccines and it was with variable success. The use of conventional vaccines to control orf is a debatable topic due to the concern of short term immunity development. Following re-infection in previously vaccinated animals, it is uncommon to observe the farms involved to experience rapid virus spread and disease outbreak. Meanwhile, cases of zoonosis from infected animals to animal handler are not uncommon. Despite failures to contain the spread of orf virus by the use of conventional vaccines, vaccination of animals with live orf virus is still considered as one of the best choice. The review herein described pertinent issues with regard to the development and use of potential effective vaccines as a control measure against orf virus infection.
    Matched MeSH terms: Zoonoses/prevention & control
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links