METHOD: A total of 3825 trauma patients from 2011 to 2016 were extracted from the Hospital Sultanah Aminah Trauma Surgery Registry. Patients were split into a development sample (n = 2683) and a validation sample (n = 1142). Univariate analysis is applied to identify significant anatomic predictors. These predictors were further analyzed using multivariable logistic regression to develop the new score and compared to existing score systems. The quality of prediction was determined regarding discrimination using sensitivity, specificity and receiver operating characteristic [ROC] curve.
RESULTS: Existing simplified score systems (GAP & mGAP) revealed areas under the ROC curve of 0.825 and 0.806. The newly developed HeCLLiP (Head, cervical spine, lung, liver, pelvic fracture) score combines only five anatomic components: injury involving head, cervical spine, lung, liver and pelvic bone. The probabilities of mortality can be estimated by charting the total score points onto a graph chart or using the cut-off value of (>2) with a sensitivity of 79.2 and specificity of 70.6% on the validation dataset. The HeCLLiP score achieved comparable values of 0.802 for the area under the ROC curve in validation samples.
CONCLUSION: HeCLLiP Score is a simplified anatomic score suited to the local Malaysian population with a good predictive ability for trauma mortality.
METHODS AND FINDINGS: We conducted a retrospective cohort study of trauma patients transported from the scene to hospitals by emergency medical service (EMS) from January 1, 2016, to November 30, 2018, using data from the Pan-Asia Trauma Outcomes Study (PATOS) database. Prehospital time intervals were categorized into response time (RT), scene to hospital time (SH), and total prehospital time (TPT). The outcomes were 30-day mortality and functional status at hospital discharge. Multivariable logistic regression was used to investigate the association of prehospital time and outcomes to adjust for factors including age, sex, mechanism and type of injury, Injury Severity Score (ISS), Revised Trauma Score (RTS), and prehospital interventions. Overall, 24,365 patients from 4 countries (645 patients from Japan, 16,476 patients from Korea, 5,358 patients from Malaysia, and 1,886 patients from Taiwan) were included in the analysis. Among included patients, the median age was 45 years (lower quartile [Q1]-upper quartile [Q3]: 25-62), and 15,498 (63.6%) patients were male. Median (Q1-Q3) RT, SH, and TPT were 20 (Q1-Q3: 12-39), 21 (Q1-Q3: 16-29), and 47 (Q1-Q3: 32-60) minutes, respectively. In all, 280 patients (1.1%) died within 30 days after injury. Prehospital time intervals were not associated with 30-day mortality. The adjusted odds ratios (aORs) per 10 minutes of RT, SH, and TPT were 0.99 (95% CI 0.92-1.06, p = 0.740), 1.08 (95% CI 1.00-1.17, p = 0.065), and 1.03 (95% CI 0.98-1.09, p = 0.236), respectively. However, long prehospital time was detrimental to functional survival. The aORs of RT, SH, and TPT per 10-minute delay were 1.06 (95% CI 1.04-1.08, p < 0.001), 1.05 (95% CI 1.01-1.08, p = 0.007), and 1.06 (95% CI 1.04-1.08, p < 0.001), respectively. The key limitation of our study is the missing data inherent to the retrospective design. Another major limitation is the aggregate nature of the data from different countries and unaccounted confounders such as in-hospital management.
CONCLUSIONS: Longer prehospital time was not associated with an increased risk of 30-day mortality, but it may be associated with increased risk of poor functional outcomes in injured patients. This finding supports the concept of the "golden hour" for trauma patients during prehospital care in the countries studied.
METHODS: This was a prospective, cross sectional study recruiting injured motorcyclists from Hanoi, Vietnam hospital. The participants were interviewed by a trained researcher. The participants' helmets were collected post-crash. Initially, the helmets were examined for their type and external characteristics. A 3 cm × 3 cm cut was made on the helmet in the impacted and non-impacted areas (control). These areas were investigated for evidence of POD and presence of micro-cracks and material disintegration. 50 participants were enrolled. Sources of information included questionnaire and laboratory analyses. The helmet factors of interest were age of the helmet, exposure of helmet to sunlight and rain (duration/day) and history of previous impact. Laboratory analyses included Fourier Transform Infra Red (FTIR) for degradation and scanning electron microscopy (SEM) for micro-structural examination.
RESULTS: Majority of the helmets was the open-face type, 40 (80.0%). 31 (62.0%) helmets aged less than three years (LTY) and 19 (38.0%) were three years old or more (MTY). 19 (61.3%) of the LTY helmets and 12 (63.2%) MTY helmets showed evidence of POD. The duration of helmet exposure to sunlight was between 93 to 6570 hours (mean 2347.74 hours; SD 1733.39). The SEM showed 15 helmets (30%) with micro-fractures, 21 helmets (42.0%) with material disintegration. Prolonged uv exposure to the ABS helmets resulted in changes in the helmet material in the form of material disintegration and microcracks and this association was statistically significant (p = 0.03).
CONCLUSION: POD occurs due to routine exposure to the ultraviolet light. Prolonged uv exposure affects outer shell surface material integrity.
OBJECTIVES: To perform a systematic review of clinical practice guidelines for falls prevention and management for adults 60 years or older in all settings (eg, community, acute care, and nursing homes), evaluate agreement in recommendations, and identify potential gaps.
EVIDENCE REVIEW: A systematic review following Preferred Reporting Items for Systematic Reviews and Meta-analyses statement methods for clinical practice guidelines on fall prevention and management for older adults was conducted (updated July 1, 2021) using MEDLINE, PubMed, PsycINFO, Embase, CINAHL, the Cochrane Library, PEDro, and Epistemonikos databases. Medical Subject Headings search terms were related to falls, clinical practice guidelines, management and prevention, and older adults, with no restrictions on date, language, or setting for inclusion. Three independent reviewers selected records for full-text examination if they followed evidence- and consensus-based processes and assessed the quality of the guidelines using Appraisal of Guidelines for Research & Evaluation II (AGREE-II) criteria. The strength of the recommendations was evaluated using Grades of Recommendation, Assessment, Development, and Evaluation scores, and agreement across topic areas was assessed using the Fleiss κ statistic.
FINDINGS: Of 11 414 records identified, 159 were fully reviewed and assessed for eligibility, and 15 were included. All 15 selected guidelines had high-quality AGREE-II total scores (mean [SD], 80.1% [5.6%]), although individual quality domain scores for clinical applicability (mean [SD], 63.4% [11.4%]) and stakeholder (clinicians, patients, or caregivers) involvement (mean [SD], 76.3% [9.0%]) were lower. A total of 198 recommendations covering 16 topic areas in 15 guidelines were identified after screening 4767 abstracts that proceeded to 159 full texts. Most (≥11) guidelines strongly recommended performing risk stratification, assessment tests for gait and balance, fracture and osteoporosis management, multifactorial interventions, medication review, exercise promotion, environment modification, vision and footwear correction, referral to physiotherapy, and cardiovascular interventions. The strengths of the recommendations were inconsistent for vitamin D supplementation, addressing cognitive factors, and falls prevention education. Recommendations on use of hip protectors and digital technology or wearables were often missing. None of the examined guidelines included a patient or caregiver panel in their deliberations.
CONCLUSIONS AND RELEVANCE: This systematic review found that current clinical practice guidelines on fall prevention and management for older adults showed a high degree of agreement in several areas in which strong recommendations were made, whereas other topic areas did not achieve this level of consensus or coverage. Future guidelines should address clinical applicability of their recommendations and include perspectives of patients and other stakeholders.