Rodent models have been used extensively to study West Nile virus (WNV) infection because they develop severe neurological symptoms similar to those observed in human WNV neuroinvasive disease. Most of this research has focused on old lineage (L) 1 strains, while information about pathogenicity is lacking for the most recent L1 and L2 strains, as well as for newly defined lineages. In this study, 4-week-old Swiss mice were inoculated with a collection of 12 WNV isolates, comprising 10 old and recent L1 and L2 strains, the putative L6 strain from Malaysia and the proposed L7 strain Koutango (KOU). The intraperitoneal inoculation of 10-fold dilutions of each strain allowed the characterization of the isolates in terms of LD50, median survival times, ID50, replication in neural and extraneural tissues and antibody production. Based on these results, we classified the isolates in three groups: high virulence (all L1a strains, recent L2 strains and KOU), moderate virulence (B956 strain) and low virulence (Kunjin and Malaysian isolates). We determined that the inoculation of a single dose of 1000 p.f.u. would be sufficient to classify WNV strains by pathotype. We confirmed the enhanced virulence of the KOU strain with a high capacity to cause rapid systemic infection. We also corroborated that differences in pathogenicity among strains do not correlate with phylogenetic lineage or geographic origin, and confirmed that recent European and African WNV strains belonging to L1 and L2 are highly virulent and do not differ in their pathotype profile compared to the prototype NY99 strain.
Matched MeSH terms: West Nile virus/classification; West Nile virus/genetics; West Nile virus/isolation & purification*; West Nile virus/pathogenicity*
Defective interfering (DI) particles of the flavivirus West Nile (WN) were generated after as few as two high multiplicity serial passages in Vero and LLC-MK2 cells. Six cell lines (Vero, LLC-MK2, L929, HeLa, BHK-21 and SW13) were used to assay interference by DI particles in a yield reduction assay. Interference was found to vary depending on the cell type used. The highest levels of interference were obtained in LLC-MK2 cells, whereas no detectable effect was observed in BHK-21 and SW13 cells. The ability of DI virus to be propagated varied depending on the cell line used; no detectable propagation of DI virus was observed in SW13 cells. Optimum interference was obtained following co-infection of cells with DI virus and standard virus at a multiplicity of 5. Interference between DI and standard viruses occurred only when they were co-infected or when cells were infected with DI virus 1 h before standard virus. Investigation of heterotypic interference by DI particles of WN virus strains from Sarawak, India and Egypt revealed that interference was dependent on the strain of WN virus or flavivirus used as standard virus. A measure of the similarity between five strains of WN virus and other flaviviruses was made on the basis of interference by DI viruses, and was found to be similar to that based on haemagglutination inhibition tests using a panel of monoclonal antibodies.
Matched MeSH terms: West Nile virus/classification; West Nile virus/genetics; West Nile virus/physiology*
Kunjin (KUN) is a flavivirus in the Japanese encephalitis antigenic complex that was first isolated from Culex annulirostris mosquitoes captured in northern Australia in 1960. It is the etiological agent of a human disease characterized by febrile illness with rash or mild encephalitis and, occasionally, of a neurological disease in horses. KUN virus shares a similar epidemiology and ecology with the closely related Murray Valley encephalitis (MVE) virus, the major causative agent of arboviral encephalitis in Australia. Based on traditional antigenic methods, KUN was initially found to be similar to, but distinct from, reference strains of West Nile (WN) virus and designated as a new species. However, more recent phylogenic analyses have revealed that some strains of WN virus, including the isolates from New York, are more similar to KUN virus and form a separate lineage to other WN viruses. An unusual KUN isolate from Malaysia and the African virus Koutango appear to form additional lineages within the WN group of viruses. While these findings are in agreement with the Seventh Report of the International Committee for the Taxonomy of Viruses that designates KUN as a subtype of West Nile, they also suggest that the species should be further subdivided into additional subtypes.
Matched MeSH terms: West Nile virus/classification; West Nile virus/genetics*
Japanese encephalitis virus (JEV) and West Nile virus (WNV) provide some of the most important examples of emerging zoonotic viral encephalitides. For these flaviviruses, only a small proportion of those infected develop clinical features, and these may range from a non-specific flu-like illness to a severe fatal meningoencephalitis, often with Parkinsonian features, or a poliomyelitis-like flaccid paralysis. The factors governing the clinical presentations, and outcome of flavivirus infections are poorly understood, but studies have looked at viral virulence determinants and the host immune response. Previous studies on JEV have suggested that the distribution of the four genotypes across Asia may relate to the differing clinical epidemiology (epidemic disease in the north, endemic disease in the south). However, new data based on the complete nucleotide sequence of a virus representing one of the oldest lineages, and phylogenetic analyses of all JEV strains for which genetic data are available, suggest that the distribution is best explained in terms of the virus' origin in the Indonesia-Malaysia region (where all genotypes have been found), and the spread of the more recent genotypes to new geographical areas. Clinical studies have shown that innate immunity, as manifested by interferon alpha levels, is important in JEV and other flaviviruses, but treatment with interferon alpha did not improve the outcome. A failure of the humoral immune response, is associated with death from encephalitis caused by JEV and WNV. Cellular immunity has been less well characterized, but CD8+ and CD4+ T cells are thought to be important.
Matched MeSH terms: West Nile virus/genetics; West Nile virus/pathogenicity*
As the 21st century begins, several outbreaks of encephalitis have been reported. An examination of these outbreaks brings into focus important epidemiological developments. Specifically, urbanization and encroachment on natural environments, the ease of world travel, and global trade can lead to spread of vectors and viruses from the developing world to the developed world. This review focuses on two recent epidemics of encephalitis: West Nile virus encephalitis in the eastern United States and Nipah virus encephalitis in Malaysia and Singapore. These examples demonstrate spread of a known viral agent from an endemic area to an area in which it had not previously been found and identification of a new viral agent. Infectious diseases in the developed world once considered "exotic" are now potential threats to all patients.
Until recently, West Nile (WN) and Kunjin (KUN) viruses were classified as distinct types in the Flavivirus genus. However, genetic and antigenic studies on isolates of these two viruses indicate that the relationship between them is more complex. To better define this relationship, we performed sequence analyses on 32 isolates of KUN virus and 28 isolates of WN virus from different geographic areas, including a WN isolate from the recent outbreak in New York. Sequence comparisons showed that the KUN virus isolates from Australia were tightly grouped but that the WN virus isolates exhibited substantial divergence and could be differentiated into four distinct groups. KUN virus isolates from Australia were antigenically homologous and distinct from the WN isolates and a Malaysian KUN virus. Our results suggest that KUN and WN viruses comprise a group of closely related viruses that can be differentiated into subgroups on the basis of genetic and antigenic analyses.
Matched MeSH terms: West Nile virus/classification*; West Nile virus/genetics; West Nile virus/immunology; West Nile virus/isolation & purification
West Nile virus (WNV) infection is an emerging zoonotic disease caused by an RNA virus of the genus Flavivirus. WNV is preserved in the environment through cyclic transmission, with mosquitoes, particularly Culex species, serving as a vector, birds as an amplifying host and humans and other mammals as dead-end hosts. To date, no studies have been carried out to determine the prevalence of the WNV antibody in Malaysia. The aim of this study was to screen for the seroprevalence of the WNV in Malaysia's Orang Asli population.
Matched MeSH terms: West Nile virus/immunology*; West Nile virus/isolation & purification
West Nile virus (WNV) is a zoonotic single-strand RNA arbovirus (family Flaviviridae: Flavivirus), transmitted among avian hosts in enzootic cycles by a mosquito vector. The virus has a significant disease effect on humans and equines when it bridges into a cycle with various sequelae with epidemic potential. This study was carried out to identify the potential spectrum of WNV hosts in three geographic areas with climatologically distinct features: Malaysia, Qatar, and the United States of America (U.S.). Serum samples were collected from avian and mammal species suspected to be reservoirs for the virus at these areas in a cross-sectional epidemiologic study. The samples were tested for the presence of antibodies against the virus using an enzyme-linked immunosorbent assay. Data on putative risk factors were also collected and analyzed for significance of association with seropositivity using the logistic regression analysis. Among the tested avian and mammalian species, raccoons had the highest seroconversion rate (54%) followed by crows (30%), horses (27%), camels (10%), other avian species (7%), and canine species (3%). It was almost twice as likely to detect seroconversion among these mammalian and avian species in the fall in comparison to other seasons of the year. Only mammalian and avian species and seasons of the year were significantly associated with the likelihood of seroconversion to WNV when we controlled for other factors in the multivariate analysis. Our data from the U.S. showed that raccoons and camels are susceptible to infection by the virus and may play a role in the perpetuation of endemic foci for the disease.
Matched MeSH terms: West Nile virus/isolation & purification*
West Nile virus (WNV), a neurotropic arbovirus, has been detected in mosquitos, birds, wildlife, horses, and humans in Malaysia, but limited information is available on WNV infection in Malaysian pigs. We tested 80 archived swine serum samples for the presence of WNV antibody and West Nile (WN) viral RNA using ID Screen West Nile Competition Multi-species enzyme-linked immunosorbent assay kits and WNV-specific primers in reverse transcription polymerase chain reaction assays, respectively. A WNV seroprevalence of 62.5% (50/80) at 95% confidence interval (51.6%-72.3%) was recorded, with a significantly higher seroprevalence among young pigs (weaner and grower) and pigs from south Malaysia. One sample was positive for Japanese encephalitis virus antibodies; WN viral RNA was not detected in any of the serum samples.
Matched MeSH terms: West Nile virus/isolation & purification*
The last three decades have seen an alarming number of high-profile outbreaks of new viruses and other pathogens, many of them emerging from wildlife. Recent outbreaks of SARS, avian influenza, and others highlight emerging zoonotic diseases as one of the key threats to global health. Similar emerging diseases have been reported in wildlife populations, resulting in mass mortalities, population declines, and even extinctions. In this paper, we highlight three examples of emerging pathogens: Nipah and Hendra virus, which emerged in Malaysia and Australia in the 1990s respectively, with recent outbreaks caused by similar viruses in India in 2000 and Bangladesh in 2004; West Nile virus, which emerged in the New World in 1999; and amphibian chytridiomycosis, which has emerged globally as a threat to amphibian populations and a major cause of amphibian population declines. We discuss a new, conservation medicine approach to emerging diseases that integrates veterinary, medical, ecologic, and other sciences in interdisciplinary teams. These teams investigate the causes of emergence, analyze the underlying drivers, and attempt to define common rules governing emergence for human, wildlife, and plant EIDs. The ultimate goal is a risk analysis that allows us to predict future emergence of known and unknown pathogens.
Tick-borne encephalitis virus (TBEV) and Crimean-Congo haemorrhagic fever virus (CCHFV) are important tick-borne viruses. Despite their wide geographical distribution and ease of acquisition, the prevalence of both viruses in Malaysia is still unknown. This study was conducted to determine the seroprevalence for TBEV and CCHFV among Malaysian farm workers as a high-risk group within the population.
The exotic and emerging viral encephalitides are caused by animal or human viruses and characterised by sudden unexpected outbreaks of neurological disease, usually in tropical and sub-tropical regions, but sometimes spreading to temperate areas. Although a wide range of viruses come within this label, as this review highlights, there are common research questions as to the origin and spread of the viruses, the contribution of viral and host factors to the clinical presentations and outcome, and the possibilities for treatment and vaccination.
In Australia, infection of horses with the West Nile virus (WNV) or Murray Valley encephalitis virus (MVEV) occasionally results in severe neurological disease that cannot be clinically differentiated. Confirmatory serological tests to detect antibody specific for MVEV or WNV in horses are often hampered by cross-reactive antibodies induced to conserved epitopes on the envelope (E) protein. This study utilized bacterially expressed recombinant antigens derived from domain III of the E protein (rE-DIII) of MVEV and WNV, respectively, to determine whether these subunit antigens provided specific diagnostic markers of infection with these two viruses. When a panel of 130 serum samples, from horses with known flavivirus infection status, was tested in enzyme-linked immunosorbent assay (ELISA) using rE-DIII antigens, a differential diagnosis of MVEV or WNV was achieved for most samples. Time-point samples from horses exposed to flavivirus infection during the 2011 outbreak of equine encephalitis in south-eastern Australia also indicated that the rE-DIII antigens were capable of detecting and differentiating MVEV and WNV infection in convalescent sera with similar sensitivity and specificity to virus neutralization tests and blocking ELISAs. Overall, these results indicate that the rE-DIII is a suitable antigen for use in rapid immunoassays for confirming MVEV and WNV infections in horses in the Australian context and warrant further assessment on sensitive, high-throughput serological platforms such as multiplex immune assays.
Matched MeSH terms: West Nile virus/isolation & purification*
Flaviviruses (FVs) are arthropod-borne viruses of medical and veterinary importance. Numerous species of FVs have been isolated from various host; mainly humans, animals, ticks, and mosquitoes. Certain FVs are extremely host-specific; at the same time, some FVs can infect an extensive range of species. Based on published literatures, 11 species of FVs have been detected from diverse host species in Malaysia. In humans, dengue virus and Japanese encephalitis virus have been reported since 1901 and 1942. In animals, the Batu Cave virus, Sitiawan virus, Carey Island, Tembusu virus, Duck Tembusu virus, and Japanese encephalitis viruses were isolated from various species. In mosquitoes, Japanese encephalitis virus and Kunjin virus were isolated from Culex spp., while Zika virus and Jugra virus were isolated from Aedes spp. In ticks, the Langat virus was isolated from Ixodes spp. One of the major challenges in the diagnosis of FVs is the presence of sero-complexes as a result of cross-reactivity with one or more FV species. Subsequently, the distribution of specific FVs among humans and animals in a specific population is problematic to assess and often require comprehensive and thorough analyses. Molecular assays such as quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and digital droplet RT-PCR (ddRT-PCR) have been used for the differentiation of flavivirus infections to increase the accuracy of epidemiological data for disease surveillance, monitoring, and control. In situations where sero-complexes are common in FVs, even sensitive assays such as qRT-pCR can produce false positive results. In this write up, an overview of the various FV sero-complexes reported in Malaysia to date and the challenges faced in diagnosis of FV infections are presented.
West Nile virus (WNV) is a zoonotic mosquito-borne flavivirus that is harbored and amplified by wild birds via the enzootic transmission cycle. Wide range of hosts are found to be susceptible to WNV infection including mammals, amphibians and reptiles across the world. Several studies have demonstrated that WNV was present in the Malaysian Orang Asli and captive birds. However, no data are available on the WNV prevalence in wild birds found in Malaysia. Therefore this study was conducted to determine the serological and molecular prevalence of WNV in wild birds in selected areas in the West Coast of Peninsular Malaysia. Two types of wild birds were screened, namely migratory and resident birds in order to explore any possibility of WNV transmission from the migratory birds to the resident birds. Thus, a cross-sectional study was conducted at the migratory birds sanctuary located in Kuala Gula, Perak and Kapar, Selangor by catching 163 migratory birds, and 97 resident birds from Kuala Gula and Parit Buntar, Perak at different time between 2016 and 2017 (Total, n = 260). Blood and oropharyngeal swabs were collected for serological and molecular analysis, respectively. Serum were screened for WNV antibodies using a commercial competitive ELISA (c-ELISA) (ID Screen® West Nile Competition Multi-species ELISA, ID VET, Montpellier, France) and cross-reactivity towards Japanese Encephalitis virus (JEV) was also carried out using the JEV-double antigen sandwich (DAS) ELISA. Oropharyngeal swabs were subjected to one-step RT-PCR to detect WNV RNA, in which positive reactions were subsequently sequenced. WNV seropositive rate of 18.71% (29/155) at 95% CI (0.131 to 0.260) and molecular prevalence of 15.2% (16/105) at 95% CI (0.092 to 0.239) were demonstrated in migratory and resident wild birds found in West Coast Malaysia. Phylogenetic analyses of the 16 WNV isolates found in this study revealed that the local strains have 99% similarity to the strains from South Africa and were clustered under lineage 2. Evidence of WNV infection in resident and migratory birds were demonstrated in this study. As a summary, intervention between migratory birds, resident birds and mosquitoes might cause the introduction and maintenance of WNV in Malaysia, however the assumption could be further proven by studying the infection dynamics in the mosquitoes present in the studied areas.