Displaying all 11 publications

Abstract:
Sort:
  1. Zanna MY, Yasmin AR, Omar AR, Arshad SS, Mariatulqabtiah AR, Nur-Fazila SH, et al.
    Int J Mol Sci, 2021 Jul 28;22(15).
    PMID: 34360810 DOI: 10.3390/ijms22158044
    Dendritic cells (DCs) are cells derived from the hematopoietic stem cells (HSCs) of the bone marrow and form a widely distributed cellular system throughout the body. They are the most efficient, potent, and professional antigen-presenting cells (APCs) of the immune system, inducing and dispersing a primary immune response by the activation of naïve T-cells, and playing an important role in the induction and maintenance of immune tolerance under homeostatic conditions. Thus, this review has elucidated the general aspects of DCs as well as the current dynamic perspectives and distribution of DCs in humans and in various species of animals that includes mouse, rat, birds, dog, cat, horse, cattle, sheep, pig, and non-human primates. Besides the role that DCs play in immune response, they also play a pathogenic role in many diseases, thus becoming a target in disease prevention and treatment. In addition, its roles in clinical immunology have also been addressed, which include its involvement in transplantation, autoimmune disease, viral infections, cancer, and as a vaccine target. Therefore, based on the current knowledge and understanding of the important roles they play, DCs can be used in the future as a powerful tool for manipulating the immune system.
    Matched MeSH terms: Virus Diseases/immunology
  2. Tan DS
    Med J Malaya, 1965 Sep;20(1):19-28.
    PMID: 4221407
    Matched MeSH terms: Virus Diseases/immunology*
  3. Saeidi A, Zandi K, Cheok YY, Saeidi H, Wong WF, Lee CYQ, et al.
    Front Immunol, 2018;9:2569.
    PMID: 30473697 DOI: 10.3389/fimmu.2018.02569
    T-cell exhaustion is a phenomenon of dysfunction or physical elimination of antigen-specific T cells reported in human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV) infections as well as cancer. Exhaustion appears to be often restricted to CD8+ T cells responses in the literature, although CD4+ T cells have also been reported to be functionally exhausted in certain chronic infections. Although our understanding of the molecular mechanisms associated with the transcriptional regulation of T-cell exhaustion is advancing, it is imperative to also explore the central mechanisms that control the altered expression patterns. Targeting metabolic dysfunctions with mitochondrion-targeted antioxidants are also expected to improve the antiviral functions of exhausted virus-specific CD8+ T cells. In addition, it is crucial to consider the contributions of mitochondrial biogenesis on T-cell exhaustion and how mitochondrial metabolism of T cells could be targeted whilst treating chronic viral infections. Here, we review the current understanding of cardinal features of T-cell exhaustion in chronic infections, and have attempted to focus on recent discoveries, potential strategies to reverse exhaustion and reinvigorate optimal protective immune responses in the host.
    Matched MeSH terms: Virus Diseases/immunology*
  4. Kanauchi O, Andoh A, AbuBakar S, Yamamoto N
    Curr Pharm Des, 2018;24(6):710-717.
    PMID: 29345577 DOI: 10.2174/1381612824666180116163411
    Recently, the risk of viral infection has dramatically increased owing to changes in human ecology such as global warming and an increased geographical movement of people and goods. However, the efficacy of vaccines and remedies for infectious diseases is limited by the high mutation rates of viruses, especially, RNA viruses. Here, we comprehensively review the effectiveness of several probiotics and paraprobiotics (sterilized probiotics) for the prevention or treatment of virally-induced infectious diseases. We discuss the unique roles of these agents in modulating the cross-talk between commensal bacteria and the mucosal immune system. In addition, we provide an overview of the unique mechanism by which viruses are eliminated through the stimulation of type 1 interferon production by probiotics and paraprobiotics via the activation of dendritic cells. Although further detailed research is necessary in the future, probiotics and/or paraprobiotics are expected to be among the rational adjunctive options for the treatment of various viral diseases.
    Matched MeSH terms: Virus Diseases/immunology
  5. Tesh RB, Gajdusek DC, Garruto RM, Cross JH, Rosen L
    Am J Trop Med Hyg, 1975 Jul;24(4):664-75.
    PMID: 1155702
    Plaque reduction neutralization tests, using five group A arboviruses (chikungunya, Ross River, Getah, Bebaru and Sindbis), were done on sera from human populations in 44 Southeast Asia and Pacific island localities. Specificity of the plaque neutralization test was determined by examining convalescent sera from patients with known alphavirus infections. Chikungunya-specific neutralizing antibodies were demonstrated in sera of persons living in South Vietnam, Northern Malaysia, Indonesia (Kalimantan and Sulawesi), as well as Luzon, Marinduque, Cebu and Mindanao islands in the Philippines. Evidence of Ross River virus infection was found among populations living in West New Guinea and Papua New Guinea mainland, the Bismark Archipelago, Rossel Island and the Solomon Islands. There appeared to be no geographic overlap in the distribution of chikungunya and Ross River viruses, with the separation in their distribution corresponding with Weber's line in the Pacific. Sindbis neutralizing antibodies were found in 7 of 21 populations sampled, but in general the prevalence of infection was low. Four sera, from Vietnam, Malaysia and Mindanao gave monospecific reactions with Getah virus. No evidence of specific Bebaru virus infection was detected. The epidemiology of these five alphaviruses in Southeast Asia and the Pacific islands is discussed.
    Matched MeSH terms: Virus Diseases/immunology
  6. Li Y, Yu P, Qu C, Li P, Li Y, Ma Z, et al.
    Antiviral Res, 2020 04;176:104743.
    PMID: 32057771 DOI: 10.1016/j.antiviral.2020.104743
    Enteric viruses including hepatitis E virus (HEV), human norovirus (HuNV), and rotavirus are causing global health issues. The host interferon (IFN) response constitutes the first-line defense against viral infections. Melanoma Differentiation-Associated protein 5 (MDA5) is an important cytoplasmic receptor sensing viral infection to trigger IFN production, and on the other hand it is also an IFN-stimulated gene (ISG). In this study, we investigated the effects and mode-of-action of MDA5 on the infection of enteric viruses. We found that MDA5 potently inhibited HEV, HuNV and rotavirus replication in multiple cell models. Overexpression of MDA5 induced transcription of important antiviral ISGs through IFN-like response, without triggering of functional IFN production. Interestingly, MDA5 activates the expression and phosphorylation of STAT1, which is a central component of the JAK-STAT cascade and a hallmark of antiviral IFN response. However, genetic silencing of STAT1 or pharmacological inhibition of the JAK-STAT cascade only partially attenuated the induction of ISG transcription and the antiviral function of MDA5. Thus, we have demonstrated that MDA5 effectively inhibits HEV, HuNV and rotavirus replication through provoking a non-canonical IFN-like response, which is partially dependent on JAK-STAT cascade.
    Matched MeSH terms: Virus Diseases/immunology*
  7. Irving AT, Zhang Q, Kong PS, Luko K, Rozario P, Wen M, et al.
    Cell Rep, 2020 11 03;33(5):108345.
    PMID: 33147460 DOI: 10.1016/j.celrep.2020.108345
    Bat cells and tissue have elevated basal expression levels of antiviral genes commonly associated with interferon alpha (IFNα) signaling. Here, we show Interferon Regulatory Factor 1 (IRF1), 3, and 7 levels are elevated in most bat tissues and that, basally, IRFs contribute to the expression of type I IFN ligands and high expression of interferon regulated genes (IRGs). CRISPR knockout (KO) of IRF 1/3/7 in cells reveals distinct subsets of genes affected by each IRF in an IFN-ligand signaling-dependent and largely independent manner. As the master regulators of innate immunity, the IRFs control the kinetics and maintenance of the IRG response and play essential roles in response to influenza A virus (IAV), herpes simplex virus 1 (HSV-1), Melaka virus/Pteropine orthoreovirus 3 Melaka (PRV3M), and Middle East respiratory syndrome-related coronavirus (MERS-CoV) infection. With its differential expression in bats compared to that in humans, this highlights a critical role for basal IRF expression in viral responses and potentially immune cell development in bats with relevance for IRF function in human biology.
    Matched MeSH terms: Virus Diseases/immunology*
  8. Fadilah SA, Sahrir S, Raymond AA, Cheong SK, Aziz JA, Sivagengei K
    PMID: 10928365
    Activation of immunoregulatory T lymphocyte subsets has been observed in dengue viral infection, being more evident in dengue hemorrhagic fever (DHF) than in classical dengue fever (DF). There are, however, as yet no well-defined host markers to determine which patients with dengue viral infection will develop severe complications during the acute febrile stage of the disease. A study was performed to compare the cellular immune status in DHF, DF and non-dengue viral infections (NDF) in order to determine the value of these parameters in distinguishing DHF from classic DF and other viral infections during the acute febrile stage of the disease. This study involved 109 febrile patients admitted because of suspected DHF. Fifty patients were serologically confirmed cases of dengue infection, of which 25 had grade 1 or 2 DHF. There was a reduction in total T (CD3), CD4 and CD8 cells in DHF and demonstrated that a low level of CD3, CD4, CD8 and CD5 cells discriminated DHF from DF patients during the febrile stage of the illness. In contrast, B (CD19) cells and natural killer (NK) cells did not appear to be discriminatory in this study. Receiver operating characteristic (ROC) curve analysis showed that a combination of CD3 cell of < or = 45% and CD5 cell of < or = 55% was the best marker to identify DHF patients (sensitivity = 84% and specificity = 52% for CD3 cell of < or = 45%; sensitivity = 92% and specificity = 71% for CD5 cell of < or = 55%). CD4 cell of < or = 25% and CD8 cell < or = 30% were equally good in discriminating DHF from DF patients. On the other hand, the ROC curves indicated no clear difference between the immunoregulatory cell counts in DF from NDF Lymphopenia, atypical lymphocytosis and thrombocytopenia were significantly more evident in dengue compared to non-dengue infection but did not appear to be discriminatory among DHF and DF patients. The reduction in CD3, CD4, CD8, CD5 cells correlated with the degree of thrombocytopenia in DHF (p < 0.05) which suggests that these cells probably participate in a common pathogenetic mechanism.
    Matched MeSH terms: Virus Diseases/immunology
  9. Paul A, Tang TH, Ng SK
    Front Immunol, 2018;9:1831.
    PMID: 30147694 DOI: 10.3389/fimmu.2018.01831
    Interferon regulatory factor 9 (IRF9) is an integral transcription factor in mediating the type I interferon antiviral response, as part of the interferon-stimulated gene factor 3. However, the role of IRF9 in many important non-communicable diseases has just begun to emerge. The duality of IRF9's role in conferring protection but at the same time exacerbates diseases is certainly puzzling. The regulation of IRF9 during these conditions is not well understood. The high homology of IRF9 DNA-binding domain to other IRFs, as well as the recently resolved IRF9 IRF-associated domain structure can provide the necessary insights for progressive inroads on understanding the regulatory mechanism of IRF9. This review sought to outline the structural basis of IRF9 that guides its regulation and interaction in antiviral immunity and other diseases.
    Matched MeSH terms: Virus Diseases/immunology*
  10. Ea CK, Hao S, Yeo KS, Baltimore D
    J Biol Chem, 2012 Sep 7;287(37):31207-17.
    PMID: 22801426 DOI: 10.1074/jbc.M112.365601
    Transcriptional homeostasis relies on the balance between positive and negative regulation of gene transcription. Methylation of histone H3 lysine 9 (H3K9) is commonly correlated with gene repression. Here, we report that a euchromatic H3K9 methyltransferase, EHMT1, functions as a negative regulator in both the NF-κB- and type I interferon-mediated gene induction pathways. EHMT1 catalyzes H3K9 methylation at promoters of NF-κB target genes. Moreover, EHMT1 interacts with p50, and, surprisingly, p50 appears to repress the expression of type I interferon genes and genes activated by type I interferons by recruiting EHMT1 to catalyze H3K9 methylation at their promoter regions. Silencing the expression of EHMT1 by RNA interference enhances expression of a subset NF-κB-regulated genes, augments interferon production, and augments antiviral immunity.
    Matched MeSH terms: Virus Diseases/immunology
  11. Engelhardt KR, Gertz ME, Keles S, Schäffer AA, Sigmund EC, Glocker C, et al.
    J Allergy Clin Immunol, 2015 Aug;136(2):402-12.
    PMID: 25724123 DOI: 10.1016/j.jaci.2014.12.1945
    BACKGROUND: Mutations in dedicator of cytokinesis 8 (DOCK8) cause a combined immunodeficiency (CID) also classified as autosomal recessive (AR) hyper-IgE syndrome (HIES). Recognizing patients with CID/HIES is of clinical importance because of the difference in prognosis and management.

    OBJECTIVES: We sought to define the clinical features that distinguish DOCK8 deficiency from other forms of HIES and CIDs, study the mutational spectrum of DOCK8 deficiency, and report on the frequency of specific clinical findings.

    METHODS: Eighty-two patients from 60 families with CID and the phenotype of AR-HIES with (64 patients) and without (18 patients) DOCK8 mutations were studied. Support vector machines were used to compare clinical data from 35 patients with DOCK8 deficiency with those from 10 patients with AR-HIES without a DOCK8 mutation and 64 patients with signal transducer and activator of transcription 3 (STAT3) mutations.

    RESULTS: DOCK8-deficient patients had median IgE levels of 5201 IU, high eosinophil levels of usually at least 800/μL (92% of patients), and low IgM levels (62%). About 20% of patients were lymphopenic, mainly because of low CD4(+) and CD8(+) T-cell counts. Fewer than half of the patients tested produced normal specific antibody responses to recall antigens. Bacterial (84%), viral (78%), and fungal (70%) infections were frequently observed. Skin abscesses (60%) and allergies (73%) were common clinical problems. In contrast to STAT3 deficiency, there were few pneumatoceles, bone fractures, and teething problems. Mortality was high (34%). A combination of 5 clinical features was helpful in distinguishing patients with DOCK8 mutations from those with STAT3 mutations.

    CONCLUSIONS: DOCK8 deficiency is likely in patients with severe viral infections, allergies, and/or low IgM levels who have a diagnosis of HIES plus hypereosinophilia and upper respiratory tract infections in the absence of parenchymal lung abnormalities, retained primary teeth, and minimal trauma fractures.

    Matched MeSH terms: Virus Diseases/immunology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links