Displaying publications 1 - 20 of 27 in total

Abstract:
Sort:
  1. Aljumaili OA, Bello MB, Yeap SK, Omar AR, Ideris A
    Onderstepoort J Vet Res, 2020 Sep 28;87(1):e1-e7.
    PMID: 33054260 DOI: 10.4102/ojvr.v87i1.1865
    Despite the availability of Newcastle disease (ND) vaccines for more than six decades, disease outbreaks continue to occur with huge economic consequences to the global poultry industry. The aim of this study is to develop a safe and effective inactivated vaccine based on a recently isolated Newcastle disease virus (NDV) strain IBS025/13 and evaluate its protective efficacy in chicken following challenge with a highly virulent genotype VII isolate. Firstly, high titre of IBS025/13 was exposed to various concentrations of binary ethylenimine (BEI) to determine the optimal conditions for complete inactivation of the virus. The inactivated virus was then prepared in form of a stable water-in-oil emulsion of black seed oil (BSO) or Freund's incomplete adjuvant (FIA) and used as vaccines in specific pathogen-free chicken. Efficacy of various vaccine preparations was also evaluated based on the ability of the vaccine to protect against clinical disease, mortality and virus shedding following challenge with highly virulent genotype\VII NDV isolate. The results indicate that exposure of NDV IBS025/13 to 10 mM of BEI for 21 h at 37 °C could completely inactivate the virus without tempering with the structural integrity of the viral hemagglutin-neuraminidase protein. More so, the inactivated vaccines adjuvanted with either BSO- or FIA-induced high hemagglutination inhibition antibody titre that protected the vaccinated birds against clinical disease and in some cases virus shedding, especially when used together with live attenuated vaccines. Thus, genotype VII-based NDV-inactivated vaccines formulated in BSO could substantially improve poultry disease control particularly when combined with live attenuated vaccines.
    Matched MeSH terms: Viral Vaccines/administration & dosage*
  2. Yee PTI, Laa Poh C
    Virology, 2017 06;506:121-129.
    PMID: 28384566 DOI: 10.1016/j.virol.2017.03.017
    Enterovirus-A71 (EV-A71) is an etiological agent of the hand, foot and mouth disease (HFMD). EV-A71 infection produces high fever and ulcers in children. Some EV-A71 strains produce severe infections leading to pulmonary edema and death. Although the protective efficacy of the inactivated vaccine (IV) was ≥90% against mild HFMD, there was approximately 80% protection against severe HFMD. The monovalent EV-A71 IV elicits humoral immunity but lacks long-term immunogenicity. Spontaneous mutations of the EV-A71 genome could lead to antigenicity changes and the virus may not be neutralized by antibodies elicited by the IV. A better alternative would be the live attenuated vaccine (LAV) that elicits cellular and humoral immunity. The LAV induces excellent antigenicity and chances of reversion is reduced by presence of multiple mutations which could reduce pathogenicity. Besides CV-A16, outbreaks have been caused by CV-A6 and CV-A10, hence the development of bivalent and trivalent vaccines is required.
    Matched MeSH terms: Viral Vaccines/administration & dosage
  3. Aini I, Ibrahim AL, Spradbrow PB
    Res Vet Sci, 1990 Sep;49(2):216-9.
    PMID: 2236920
    The food pellet vaccine has been shown to be effective in trials conducted under laboratory and simulated field conditions. The village chickens vaccinated with the food pellet vaccine during the field trial were protected against virulent Newcastle disease virus. The efficacy of the food pellet vaccine in the field was evaluated by challenge trial in which 60 per cent protection was obtained, or by monitoring the incidence of Newcastle disease in vaccinated and unvaccinated birds. There was no report of Newcastle disease outbreaks in the vaccinated birds during the two-year period of the field trial. The ease in administering the food pellet vaccine makes it readily accepted by the farmers.
    Matched MeSH terms: Viral Vaccines/administration & dosage*
  4. Ch'ng WC, Stanbridge EJ, Wong KT, Ong KC, Yusoff K, Shafee N
    Virol J, 2012;9:155.
    PMID: 22877087 DOI: 10.1186/1743-422X-9-155
    Enterovirus 71 (EV71) causes severe neurological diseases resulting in high mortality in young children worldwide. Development of an effective vaccine against EV71 infection is hampered by the lack of appropriate animal models for efficacy testing of candidate vaccines. Previously, we have successfully tested the immunogenicity and protectiveness of a candidate EV71 vaccine, containing recombinant Newcastle disease virus capsids that display an EV71 VP1 fragment (NPt-VP11-100) protein, in a mouse model of EV71 infection. A drawback of this system is its limited window of EV71 susceptibility period, 2 weeks after birth, leading to restricted options in the evaluation of optimal dosing regimens. To address this issue, we have assessed the NPt-VP11-100 candidate vaccine in a hamster system, which offers a 4-week susceptibility period to EV71 infection. Results obtained showed that the NPt-VP11-100 candidate vaccine stimulated excellent humoral immune response in the hamsters. Despite the high level of antibody production, they failed to neutralize EV71 viruses or protect vaccinated hamsters in viral challenge studies. Nevertheless, these findings have contributed towards a better understanding of the NPt-VP11-100 recombinant protein as a candidate vaccine in an alternative animal model system.
    Matched MeSH terms: Viral Vaccines/administration & dosage
  5. Liu L, Mo Z, Liang Z, Zhang Y, Li R, Ong KC, et al.
    BMC Med, 2015;13:226.
    PMID: 26381232 DOI: 10.1186/s12916-015-0448-7
    To investigate the long-term effects on immunity of an inactivated enterovirus 71 (EV71) vaccine and its protective efficacy.
    Matched MeSH terms: Viral Vaccines/administration & dosage*
  6. Ezeasor CK, Emikpe BO, Shoyinka SV, Sabri MY
    J Immunoassay Immunochem, 2021 Jul 04;42(4):424-443.
    PMID: 33724901 DOI: 10.1080/15321819.2021.1895216
    This study reports the influence of peste des petits ruminants (PPR) vaccination on the clinico-pathological outcomes of PPR in the face of an outbreak. Twenty-two West African dwarf goats procured for a different study started showing early signs of PPR during acclimatization. In response, PPR vaccine was administered either intranasally with phytogenic mucoadhesive gum (Group A; n = 6) or without gum (Group B; n = 6); subcutaneously (Group C; n = 6) or not vaccinated (Group D; n = 4) and studied for 21 days. The clinical scores, hematology, serology and pathology scores were evaluated. Clinical signs of PPR were present in all groups, presenting a percentage mortality of 33%; 33%; 64% and 100% for Groups A, B, C, and D, respectively. Polycythemia and mild leukopenia were observed in all groups, and all animals were seropositive by day 7 post-vaccination. The lung consolidation scores were low in Groups A and B, compared to Group C. Histopathological lesions consistent with PPR was observed in the lymphoid organs, gastrointestinal tract, and lungs with the presence of PPR antigen as detected by immunohistochemistry. The findings suggest that intranasal vaccination with or without mucoadhesive gum may influence the outcome of PPR infection more than the subcutaneous route in the face of an outbreak.
    Matched MeSH terms: Viral Vaccines/administration & dosage
  7. Harapan H, Mudatsir M, Yufika A, Nawawi Y, Wahyuniati N, Anwar S, et al.
    Viruses, 2018 11 18;10(11).
    PMID: 30453663 DOI: 10.3390/v10110648
    One of the crucial steps during trials for Zika and other vaccines is to recruit participants and to understand how participants' attitudes and sociodemographic characteristics affect willingness to participate (WTP). This study was conducted to assess WTP, its explanatory variables, and the impact of financial compensation on WTP in Indonesia. A health facility-based cross-sectional study was conducted in eleven regencies in the Aceh and West Sumatra provinces of Indonesia. Participants were recruited via a convenience sampling method and were interviewed. The associations between explanatory variables and WTP were assessed using a two-step logistic regression analysis. A total of 1,102 parents were approached, and of these 956 (86.8%) completed the interview and were included in analysis. Of those, 144 (15.1%) were willing to participate in a Zika vaccine trial without a financial compensation. In the multivariate analysis, WTP was tied to an age of more than 50 years old, compared to 20⁻29 years (odds ratio (OR): 5.0; 95% confidence interval (CI): 2.37⁻10.53), to being female (OR: 2.20; 95% CI: 1.11⁻4.37), and to having heard about Zika (OR: 2.41; 95% CI: 1.59⁻3.65). Participants' WTP increased gradually with higher financial compensation. The rate of WTP increased to 62.3% at the highest offer (US$ 350.4), and those who were still unwilling to participate (37.7%) had a poorer attitude towards childhood vaccination. This study highlights that pre-existing knowledge about Zika and attitudes towards childhood vaccination are important in determining community members being willing to participate in a vaccine trial. Financial incentives are still an important factor to enhance participant recruitment during a vaccine trial.
    Matched MeSH terms: Viral Vaccines/administration & dosage*
  8. Ismail MI, Tan SW, Hair-Bejo M, Omar AR
    J Vet Sci, 2020 Nov;21(6):e76.
    PMID: 33263227 DOI: 10.4142/jvs.2020.21.e76
    BACKGROUND: The predominant infectious bronchitis virus (IBV) strains detected in chickens in Malaysia are the Malaysian variant (MV) and QX-like, which are associated with respiratory distress, nephropathy, and high mortality. On the other hand, the antigenic relatedness and efficacy of IBV vaccines against these 2 field IBV strains are not well characterized.

    OBJECTIVES: This study aimed to determine the antigen relatedness and efficacy of different IB vaccine strains against a challenge with MV and QX-like strains.

    METHODS: The antigen relatedness and the ability of different IB vaccine strains in conferring protection against MV and QX-like were assessed based on the clinical signs, macroscopic lesions, and ciliary activity.

    RESULTS: The MV strain IBS037A/2014 showed minor antigenic subtype differences with the vaccine virus Mass H120 and 4/91 strains but showed major antigenic subtype differences with the K2 strain. The Malaysian QX-like strain IBS130/2015 showed major antigenic subtype differences with the MV strain IBS037A/2014 and the vaccine strains except for K2. Chickens vaccinated once with Mass (H120) or with non-Mass (4/91 and K2) developed antibody responses with the highest antibody titer detected in the groups vaccinated with H120 and 4/91. The mean ciliary activities of the vaccinated chickens were between 56 to 59% and 48 to 52% in chickens challenged with IBS037A/2014 and IBS130/2015, respectively. The vaccinated and challenged birds showed mild to severe lesions in the lungs and kidneys.

    CONCLUSIONS: Despite the minor antigenic subtype differences, a single inoculation with Mass or non-Mass vaccines could not protect against the MV IBS037A/2014 and QX-like IBS130/2015.

    Matched MeSH terms: Viral Vaccines/administration & dosage*
  9. DeBuysscher BL, Scott D, Marzi A, Prescott J, Feldmann H
    Vaccine, 2014 May 07;32(22):2637-44.
    PMID: 24631094 DOI: 10.1016/j.vaccine.2014.02.087
    BACKGROUND: Nipah virus (NiV), a zoonotic pathogen causing severe respiratory illness and encephalitis in humans, emerged in Malaysia in 1998 with subsequent outbreaks on an almost annual basis since 2001 in parts of the Indian subcontinent. The high case fatality rate, human-to-human transmission, wide-ranging reservoir distribution and lack of licensed intervention options are making NiV a serious regional and potential global public health problem. The objective of this study was to develop a fast-acting, single-dose NiV vaccine that could be implemented in a ring vaccination approach during outbreaks.

    METHODS: In this study we have designed new live-attenuated vaccine vectors based on recombinant vesicular stomatitis viruses (rVSV) expressing NiV glycoproteins (G or F) or nucleoprotein (N) and evaluated their protective efficacy in Syrian hamsters, an established NiV animal disease model. We further characterized the humoral immune response to vaccination in hamsters using ELISA and neutralization assays and performed serum transfer studies.

    RESULTS: Vaccination of Syrian hamsters with a single dose of the rVSV vaccine vectors resulted in strong humoral immune responses with neutralizing activities found only in those animals vaccinated with rVSV expressing NiV G or F proteins. Vaccinated animals with neutralizing antibody responses were completely protected from lethal NiV disease, whereas animals vaccinated with rVSV expressing NiV N showed only partial protection. Protection of NiV G or F vaccinated animals was conferred by antibodies, most likely the neutralizing fraction, as demonstrated by serum transfer studies. Protection of N-vaccinated hamsters was not antibody-dependent indicating a role of adaptive cellular responses for protection.

    CONCLUSIONS: The rVSV vectors expressing Nipah virus G or F are prime candidates for new 'emergency vaccines' to be utilized for NiV outbreak management.

    Matched MeSH terms: Viral Vaccines/administration & dosage*
  10. Broder CC, Xu K, Nikolov DB, Zhu Z, Dimitrov DS, Middleton D, et al.
    Antiviral Res, 2013 Oct;100(1):8-13.
    PMID: 23838047 DOI: 10.1016/j.antiviral.2013.06.012
    Hendra virus and Nipah virus are bat-borne paramyxoviruses that are the prototypic members of the genus Henipavirus. The henipaviruses emerged in the 1990s, spilling over from their natural bat hosts and causing serious disease outbreaks in humans and livestock. Hendra virus emerged in Australia and since 1994 there have been 7 human infections with 4 case fatalities. Nipah virus first appeared in Malaysia and subsequent outbreaks have occurred in Bangladesh and India. In total, there have been an estimated 582 human cases of Nipah virus and of these, 54% were fatal. Their broad species tropism and ability to cause fatal respiratory and/or neurologic disease in humans and animals make them important transboundary biological threats. Recent experimental findings in animals have demonstrated that a human monoclonal antibody targeting the viral G glycoprotein is an effective post-exposure treatment against Hendra and Nipah virus infection. In addition, a subunit vaccine based on the G glycoprotein of Hendra virus affords protection against Hendra and Nipah virus challenge. The vaccine has been developed for use in horses in Australia and is the first vaccine against a Biosafety Level-4 (BSL-4) agent to be licensed and commercially deployed. Together, these advances offer viable approaches to address Hendra and Nipah virus infection of livestock and people.
    Matched MeSH terms: Viral Vaccines/administration & dosage*
  11. Barnard RT
    Expert Rev Vaccines, 2010 May;9(5):461-3.
    PMID: 20450319 DOI: 10.1586/erv.10.48
    The Recombinant Vaccines: Strategies for Candidate Discovery and Vaccine Delivery conference, organized by EuroSciCon, hosted a group of UK-based and international scientists from as far afield as Malaysia and Australia. Genomic analyses of pathogens and elucidation of mechanisms of pathogenesis has advanced candidate discovery and development of vaccines. Therefore, it was timely that this conference featured, in addition to detailed expositions of target selection and clinical trials, presentations on manufacturability, scale-up and delivery of vaccines. Ten talks were presented. This meeting report describes the key topics presented and the themes that emerged from this conference.
    Matched MeSH terms: Viral Vaccines/administration & dosage
  12. Nagendrakumar SB, Hong NT, Geoffrey FT, Jacqueline MM, Andrew D, Michelle G, et al.
    Vaccine, 2015 Aug 26;33(36):4513-9.
    PMID: 26192355 DOI: 10.1016/j.vaccine.2015.07.014
    Pigs play a significant role during outbreaks of foot-and-mouth disease (FMD) due to their ability to amplify the virus. It is therefore essential to determine what role vaccination could play to prevent clinical disease and lower virus excretion into the environment. In this study we investigated the efficacy of the double oil emulsion A Malaysia 97 vaccine (>6PD50/dose) against heterologous challenge with an isolate belonging to the A SEA-97 lineage at 4 and 7 days post vaccination (dpv). In addition, we determined whether physical separation of pigs in the same room could prevent virus transmission. Statistically there was no difference in the level of protection offered by 4 and 7 dpv. However, no clinical disease or viral RNA was detected in the blood of pigs challenged 4 dpv, although three of the pigs had antibodies to the non-structural proteins (NSPs), indicating viral replication. Viral RNA was also detected in nasal and saliva swabs, but on very few occasions. Two of the pigs vaccinated seven days prior to challenge had vesicles distal from the injection site, but on the inoculated foot, and two pigs had viral RNA detected in the blood. One pig sero-converted to the NSPs. In contrast, all unvaccinated and inoculated pigs had evidence of infection. No infection occurred in any of the susceptible pigs in the same room, but separated from the infected pigs, indicating that strict biosecurity measures were sufficient under these experimental conditions to prevent virus transmission. However, viral RNA was detected in the nasal swabs of one group of pigs, but apparently not at sufficient levels to cause clinical disease. Vaccination led to a significant decrease in viral RNA in vaccinated pigs compared to unvaccinated and infected pigs, even with this heterologous challenge, and could therefore be considered as a control option during outbreaks.
    Matched MeSH terms: Viral Vaccines/administration & dosage*
  13. Saeed MI, Omar AR, Hussein MZ, Elkhidir IM, Sekawi Z
    Hum Vaccin Immunother, 2015;11(10):2414-24.
    PMID: 26186664 DOI: 10.1080/21645515.2015.1052918
    This study introduces a new approach for enhancing immunity toward mucosal vaccines. HEV71 killed vaccine that is formulated with nanosize calcium phosphate adjuvant and encapsulated onto chitosan and alginate delivery carriers was examined for eliciting antibody responses in serum and saliva collected at weeks 0, 1, 3, 5, 7 and 9 for viral-specific IgA & IgG levels and viral neutralizing antibody titers. The antibody responses induced in rabbits by the different formulations delivered by a single (buccal) route were compared to those of dual immunization (intradermal / mucosal) and un-immunized control. Chitosan-loaded vaccine adjuvant induced elevated IgA antibody, while Alginate-adjuvant irreversible bonding sequestered the vaccine and markedly reduced immunogenicity. The induced mucosal and parenteral antibody profiles appeared in an inverse manner of enhanced mucosal IgA antibody accompanied by lower systemic IgG following a single oral immunization route. The combined intradermal and oral dual-immunized group developed an elevated salivary IgA, systemic IgG, and virus neutralizing response. A reduced salivary neutralizing antibody titer was observed and attributed to the continual secretion exchanges in saliva. Designing a successful mucosal delivery formulation needs to take into account the vaccine delivery site, dosage, adjuvant and carrier particle size, charge, and the reversibility of component interactions. The dual immunization seems superior and is a important approach for modulating the antibody response and boosting mucosal protection against HEV71 and similar pathogens based on their transmission mode, tissue tropism and shedding sites. Finally, the study has highlighted the significant role of dual immunization for simultaneous inducing and modulating the systemic and mucosal immune responses to EV71.
    Matched MeSH terms: Viral Vaccines/administration & dosage
  14. Liew PK, Zulkifli I, Hair-Bejo M, Omar AR, Israf DA
    Poult Sci, 2003 Dec;82(12):1879-85.
    PMID: 14717545
    The effects of early age feed restriction and heat conditioning on heat shock protein (HSP) 70 expression, antibody production, resistance to infectious bursal disease (IBD), and growth of heat-stressed male broiler chickens were investigated. Chicks were divided into 4 groups: 60% feed restriction on d 4,5, and 6 (FR); exposure to 36 +/- 1 degrees C for 1 h from d 1 to 21 (HT); combination of FR and HT (FRHT); and control. From d 35 to 50, heat stress was induced by exposing birds to 38 +/- 1 degrees C and 80% RH for 2 h/d. On d 36, each bird was administered 10 times the normal dose of live IBD vaccine. After heat exposure, the FRHT birds had higher HSP 70 density (d 41) and weight gain (from d 35 to 49) and lower bursal histological score (BHS) (d 51) than their HT and control counterparts. The HSP 70 expression and BHS of FR birds were not significantly different from those of the other 3 groups during the heat exposure period. Heat shock protein 70 and BHS data were negatively correlated (r = -0.33, P = 0.0008). We concluded that FRHT could improve weight gain and resistance to IBD in male broiler chickens under heat stress conditions. The improved heat tolerance and disease resistance in FRHT birds could be attributed to better HSP 70 response.
    Matched MeSH terms: Viral Vaccines/administration & dosage
  15. Chiu ML, Luo ST, Chen YY, Chung WY, Duong V, Dussart P, et al.
    Vaccine, 2020 01 03;38(1):1-9.
    PMID: 31679864 DOI: 10.1016/j.vaccine.2019.09.111
    Enteroviruses (EV), the major pathogens of hand, foot, and mouth disease (HFMD) and herpangina, affect millions of children each year. Most human enteroviruses cause self-limited infections except polioviruses, enterovirus A71 (EV-A71), enterovirus D68 (EV-D68), and several echoviruses (Echo) and coxsackieviruses (CV). Especially, EV-A71 has repeatedly caused large-scale outbreaks in the Asia-Pacific region since 1997. Some Asian countries have experienced cyclical outbreaks of severe EV-A71 infections and initiated development of EV-A71 vaccines. Five EV-A71 vaccine candidates have been clinically evaluated and three of them were approved for marketing in China. However, none of the China-approved products seek marketing approval in other countries. This situation supports a role for collaboration among Asian countries to facilitate clinical trials and licensure of EV-A71 vaccines. Additionally, enterovirus D68 outbreaks have been reported in the US and Taiwan currently and caused severe complications and deaths. Hence, an Asia-Pacific Network for Enterovirus Surveillance (APNES) has been established to estimate disease burden, understand virus evolution, and facilitate vaccine development through harmonizing laboratory diagnosis and data collection. Founded in 2017, the APNES is comprised of internationally recognized experts in the field of enterovirus in Asian countries working to raise awareness of this potentially fatal and debilitating disease. This article demonstrated the summaries of the first expert meeting, 2017 International Workshop on Enterovirus Surveillance and Vaccine Development, held by APNES in Taipei, Taiwan, March 2017.
    Matched MeSH terms: Viral Vaccines/administration & dosage*
  16. Yasmin AR, Yeap SK, Hair-Bejo M, Omar AR
    Avian Dis, 2016 12;60(4):739-751.
    PMID: 27902915
    Studies have shown that infectious bursal disease virus (IBDV) infects lymphoid cells, mainly B cells and macrophages. This study was aimed to examine the involvement of chicken splenic-derived dendritic cells (ch-sDCs) in specific-pathogen-free chickens following inoculation with IBDV vaccine strain (D78) and a very virulent (vv) strain (UPM0081). Following IBDV infection, enriched activated ch-sDCs were collected by using the negative selection method and were examined based on morphology and immunophenotyping to confirm the isolation method for dendritic cells (DCs). The presence of IBDV on enriched activated ch-sDCs was analyzed based on the immunofluorescence antibody test (IFAT), flow cytometry, and quantitative real-time PCR (RT-qPCR) while the mRNAs of several cytokines were detected using RT-qPCR. The isolated ch-sDCs resembled typical DC morphologies found in mammals by having a veiled shape and they grew in clusters. Meanwhile, the expression of DC maturation markers, namely CD86 and MHCII, were increased at day 2 and day 3 following vvIBDV and vaccine strain inoculation, respectively, ranging from 10% to 40% compared to the control at 2.55% (P < 0.05). At day 3 postinfection, IBDV VP3 proteins colocalized with CD86 were readily detected via IFAT and flow cytometry in both vaccine and vvIBDV strains. In addition, enriched activated ch-sDCs were also detected as positive based on the VP4 gene by RT-qPCR; however, a higher viral load was detected on vvIBDV compared to the vaccine group. Infection with vaccine and vvIBDV strains induced the enriched activated ch-sDCs to produce proinflammatory cytokines and Th1-like cytokines from day 3 onward; however, the expressions were higher in the vvIBDV group (P < 0.05). These data collectively suggest that enriched activated ch-sDCs were permissive to IBDV infection and produced a strong inflammatory and Th1-like cytokine response following vvIBDV infection as compared to the vaccine strain.
    Matched MeSH terms: Viral Vaccines/administration & dosage*
  17. Chan Y, Ng SW, Singh SK, Gulati M, Gupta G, Chaudhary SK, et al.
    Life Sci, 2021 Sep 01;280:119744.
    PMID: 34174324 DOI: 10.1016/j.lfs.2021.119744
    Viral respiratory tract infections have significantly impacted global health as well as socio-economic growth. Respiratory viruses such as the influenza virus, respiratory syncytial virus (RSV), and the recent SARS-CoV-2 infection (COVID-19) typically infect the upper respiratory tract by entry through the respiratory mucosa before reaching the lower respiratory tract, resulting in respiratory disease. Generally, vaccination is the primary method in preventing virus pathogenicity and it has been shown to remarkably reduce the burden of various infectious diseases. Nevertheless, the efficacy of conventional vaccines may be hindered by certain limitations, prompting the need to develop novel vaccine delivery vehicles to immunize against various strains of respiratory viruses and to mitigate the risk of a pandemic. In this review, we provide an insight into how polymer-based nanoparticles can be integrated with the development of vaccines to effectively enhance immune responses for combating viral respiratory tract infections.
    Matched MeSH terms: Viral Vaccines/administration & dosage*
  18. Firouzamandi M, Moeini H, Hosseini SD, Bejo MH, Omar AR, Mehrbod P, et al.
    Int J Nanomedicine, 2016;11:259-67.
    PMID: 26834470 DOI: 10.2147/IJN.S92225
    Plasmid DNA (pDNA)-based vaccines have emerged as effective subunit vaccines against viral and bacterial pathogens. In this study, a DNA vaccine, namely plasmid internal ribosome entry site-HN/F, was applied in ovo against Newcastle disease (ND). Vaccination was carried out using the DNA vaccine alone or as a mixture of the pDNA and dextran-spermine (D-SPM), a nanoparticle used for pDNA delivery. The results showed that in ovo vaccination with 40 μg pDNA/egg alone induced high levels of antibody titer (P<0.05) in specific pathogen-free (SPF) chickens at 3 and 4 weeks postvaccination compared to 2 weeks postvaccination. Hemagglutination inhibition (HI) titer was not significantly different between groups injected with 40 μg pDNA + 64 μg D-SPM and 40 μg pDNA at 4 weeks postvaccination (P>0.05). Higher antibody titer was observed in the group immunized with 40 μg pDNA/egg at 4 weeks postvaccination. The findings also showed that vaccination with 40 μg pDNA/egg alone was able to confer protection against Newcastle disease virus strain NDIBS002 in two out of seven SPF chickens. Although the chickens produced antibody titers 3 weeks after in ovo vaccination, it was not sufficient to provide complete protection to the chickens from lethal viral challenge. In addition, vaccination with pDNA/D-SPM complex did not induce high antibody titer when compared with naked pDNA. Therefore, it was concluded that DNA vaccination with plasmid internal ribosome entry site-HN/F can be suitable for in ovo application against ND, whereas D-SPM is not recommended for in ovo gene delivery.
    Matched MeSH terms: Viral Vaccines/administration & dosage*
  19. van Doremalen N, Lambe T, Sebastian S, Bushmaker T, Fischer R, Feldmann F, et al.
    PLoS Negl Trop Dis, 2019 Jun;13(6):e0007462.
    PMID: 31170144 DOI: 10.1371/journal.pntd.0007462
    Nipah virus (NiV) is a highly pathogenic re-emerging virus that causes outbreaks in South East Asia. Currently, no approved and licensed vaccine or antivirals exist. Here, we investigated the efficacy of ChAdOx1 NiVB, a simian adenovirus-based vaccine encoding NiV glycoprotein (G) Bangladesh, in Syrian hamsters. Prime-only as well as prime-boost vaccination resulted in uniform protection against a lethal challenge with NiV Bangladesh: all animals survived challenge and we were unable to find infectious virus either in oral swabs, lung or brain tissue. Furthermore, no pathological lung damage was observed. A single-dose of ChAdOx1 NiVB also prevented disease and lethality from heterologous challenge with NiV Malaysia. While we were unable to detect infectious virus in swabs or tissue of animals challenged with the heterologous strain, a very limited amount of viral RNA could be found in lung tissue by in situ hybridization. A single dose of ChAdOx1 NiVB also provided partial protection against Hendra virus and passive transfer of antibodies elicited by ChAdOx1 NiVB vaccination partially protected Syrian hamsters against NiV Bangladesh. From these data, we conclude that ChAdOx1 NiVB is a suitable candidate for further NiV vaccine pre-clinical development.
    Matched MeSH terms: Viral Vaccines/administration & dosage
  20. Moeini H, Omar AR, Rahim RA, Yusoff K
    Virol J, 2011;8:119.
    PMID: 21401953 DOI: 10.1186/1743-422X-8-119
    Studies have shown that the VP22 gene of Marek's Disease Virus type-1 (MDV-1) has the property of movement between cells from the original cell of expression into the neighboring cells. The ability to facilitate the spreading of the linked proteins was used to improve the potency of the constructed DNA vaccines against chicken anemia virus (CAV).
    Matched MeSH terms: Viral Vaccines/administration & dosage
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links