Displaying publications 1 - 20 of 116 in total

Abstract:
Sort:
  1. Chear CT, Ismail IH, Chan KC, Noh LM, Kassim A, Latiff AHA, et al.
    Front Immunol, 2023;14:1252765.
    PMID: 37809070 DOI: 10.3389/fimmu.2023.1252765
    BACKGROUND: Bruton's tyrosine kinase (BTK) is a cytoplasmic protein involved in the B cell development. X-linked agammaglobulinemia (XLA) is caused by mutation in the BTK gene, which results in very low or absent B cells. Affected males have markedly reduced immunoglobulin levels, which render them susceptible to recurrent and severe bacterial infections. Methods: Patients suspected with X-linked agammaglobulinemia were enrolled during the period of 2010-2018. Clinical summary, and immunological profiles of these patients were recorded. Peripheral blood samples were collected for monocyte BTK protein expression detection and BTK genetic analysis. The medical records between January 2020 and June 2023 were reviewed to investigate COVID-19 in XLA.

    RESULTS: Twenty-two patients (from 16 unrelated families) were molecularly diagnosed as XLA. Genetic testing revealed fifteen distinct mutations, including four splicing mutations, four missense mutations, three nonsense mutations, three short deletions, and one large indel mutation. These mutations scattered throughout the BTK gene and mostly affected the kinase domain. All mutations including five novel mutations were predicted to be pathogenic or deleterious by in silico prediction tools. Genetic testing confirmed that eleven mothers and seven sisters were carriers for the disease, while three mutations were de novo. Flow cytometric analysis showed that thirteen patients had minimal BTK expression (0-15%) while eight patients had reduced BTK expression (16-64%). One patient was not tested for monocyte BTK expression due to insufficient sample. Pneumonia (n=13) was the most common manifestation, while Pseudomonas aeruginosa was the most frequently isolated pathogen from the patients (n=4). Mild or asymptomatic COVID-19 was reported in four patients.

    CONCLUSION: This report provides the first overview of demographic, clinical, immunological and genetic data of XLA in Malaysia. The combination of flow cytometric assessment and BTK genetic analysis provides a definitive diagnosis for XLA patients, especially with atypical clinical presentation. In addition, it may also allow carrier detection and assist in genetic counselling and prenatal diagnosis.

    Matched MeSH terms: Protein-Tyrosine Kinases/genetics
  2. Edwards MJ, Wilson GC, Keitsch S, Soddemann M, Wilker B, Müller CP, et al.
    J Neurochem, 2022 Nov;163(4):357-369.
    PMID: 36227646 DOI: 10.1111/jnc.15708
    Major depressive disorder (MDD) is a severe disease of unknown pathogenesis with a lifetime prevalence of ~10%. Therapy requires prolonged treatment that often fails. We have previously demonstrated that ceramide levels in the blood plasma of patients and in mice with experimental MDD are increased. Neutralization of blood plasma ceramide prevented experimental MDD in mice. Mechanistically, we demonstrated that blood plasma ceramide accumulated in endothelial cells of the hippocampus, inhibited phospholipase D (PLD) and thereby decreased phosphatidic acid in the hippocampus. Here, we demonstrate that phosphatidic acid binds to and controls the activity of phosphotyrosine phosphatase (PTP1B) in the hippocampus and thus determines tyrosine phosphorylation of a variety of cellular proteins including TrkB. Injection of PLD, phosphatidic acid, or inhibition of PTP1B abrogated MDD and normalized cellular tyrosine phosphorylation, including phosphorylation of TrkB and neurogenesis in the hippocampus. Most importantly, these treatments also rapidly normalized behavior of mice with experimental MDD. Since phosphatidic acid binds to and inhibits PTP1B, the lack of phosphatidic acid results in increased activity of PTP1B and thereby in reduced tyrosine phosphorylation of TrkB and other cellular proteins. Thus, our data indicate a novel pathogenetic mechanism of and a rapidly acting targeted treatment for MDD.
    Matched MeSH terms: Tyrosine/metabolism
  3. Srikumar PS, Rohini K
    Appl Biochem Biotechnol, 2013 Oct;171(4):874-82.
    PMID: 23904258 DOI: 10.1007/s12010-013-0393-x
    Lafora disease (LD) is an autosomal recessive, progressive form of myoclonus epilepsy which affects worldwide. LD occurs mainly in countries like southern Europe, northern Africa, South India, and in the Middle East. LD occurs with its onset mainly in teenagers and leads to decline and death within 2 to 10 years. The genes EPM2A and EPM2B are commonly involved in 90 % of LD cases. EPM2A codes for protein laforin which contains an amino terminal carbohydrate binding module (CBM) belonging to the CBM20 family and a carboxy terminal dual specificity phosphatase domain. Mutations in laforin are found to abolish glycogen binding and have been reported in wet lab methods. In order to investigate on structural insights on laforin mutation K81A, we performed molecular dynamics (MD) simulation studies for native and mutant protein. MD simulation results showed loss of stability due to mutation K87A which confirmed the structural reason for conformational changes observed in laforin. The conformational change of mutant laforin was confirmed by analysis using root mean square deviation, root mean square fluctuation, solvent accessibility surface area, radius of gyration, hydrogen bond, and principle component analysis. Our results identified that the flexibility of K87A mutated laforin structure, with replacement of acidic amino acid to aliphatic amino acid in functional CBM domain, have more impact in abolishing glycogen binding that favors LD.
    Matched MeSH terms: Protein Tyrosine Phosphatases, Non-Receptor/genetics*; Protein Tyrosine Phosphatases, Non-Receptor/metabolism; Protein Tyrosine Phosphatases, Non-Receptor/chemistry*
  4. Srikumar PS, Rohini K, Rajesh PK
    Protein J, 2014 Jun;33(3):289-95.
    PMID: 24770803 DOI: 10.1007/s10930-014-9561-2
    Mutations in human laforin lead to an autosomal neurodegenerative disorder Lafora disease. In N-terminal carbohydrate binding domain of laforin, two mutations W32G and K87A are reported as highly disease causing laforin mutants. Experimental studies reported that mutations are responsible for the abolishment of glycogen binding which is a critical function of laforin. Our current computational study focused on the role of conformational changes in human laforin structure due to existing single mutation W32G and prepared double mutation W32G/K87A related to loss of glycogen binding. We performed 10 ns molecular dynamics (MD) simulation studies in the Gromacs package for both mutations and analyzed the trajectories. From the results, the global properties like root mean square deviation, root mean square fluctuation, radius of gyration, solvent accessible surface area and hydrogen bonds showed structural changes in atomic level observed in W32G and W32G/K87A laforin mutants. The conformational change induced by mutants influenced the loss of the overall stability of the native laforin. Moreover, the change in overall motion of protein was analyzed by principal component analysis and results showed protein clusters expanded more than native and also change in direction in case of double mutant in conformational space. Overall, our report provides theoretical information on loss of structure-function relationship due to flexible nature of laforin mutants. In conclusion, comparative MD simulation studies support the experimental data on W32G and W32G/K87A related to the lafora disease mechanism on glycogen binding.
    Matched MeSH terms: Protein Tyrosine Phosphatases, Non-Receptor/genetics*; Protein Tyrosine Phosphatases, Non-Receptor/metabolism; Protein Tyrosine Phosphatases, Non-Receptor/chemistry*
  5. Wan Mohamad Darani WNS, Mat Ruzlin AN, Azhar ZI, Chen XW
    Sci Rep, 2024 Mar 22;14(1):6890.
    PMID: 38519534 DOI: 10.1038/s41598-024-57593-y
    The growing Human Immunodeficiency Virus (HIV) incidences and insufficient HIV knowledge among Malaysian late adolescents necessitate immediate attention to HIV prevention via education. This study aims to develop and validate an Information-Motivation-Behavioural skills (IMB) model-based education kit for adolescents, PREM-Kit, to educate on HIV prevention among Malaysian late adolescents. Utilizing the Analysis, Design, Development, Implementation, and Evaluation model, we conducted the study in three phases: needs assessment, development of PREM-Kit, and validation of PREM-Kit by applying the IMB model to map the PREM-Kit's contents. PREM-Kit, developed in Malay language, consisted of an infographic flip chart and videos. Five multi-disciplinary experts validated the PREM-Kit using the content validity index (CVI), and 13 end-users validated the PREM-Kit using the Malay version of the Patient Education Materials Assessment Tool for Printable and Audiovisual Materials. The infographic flip chart comprised three modules covering 15 topics, and an animated video accompanied each module. PREM-Kit achieved CVI scores of 1.0 and median scores of over 80% for understandability and actionability. Overall, the newly developed IMB model-based HIV education kit has good content validity, is simple to comprehend and apply, and is ready for testing its effectiveness in improving adolescents' knowledge, attitudes, and practices for HIV prevention.
    Matched MeSH terms: Receptor Protein-Tyrosine Kinases
  6. Yahya TSANT, Azmi NC, Yee FS, Chyang PJ, Ting NS, Seng TC
    Int J Med Mushrooms, 2024;26(3):55-66.
    PMID: 38505903 DOI: 10.1615/IntJMedMushrooms.2024052325
    Leukemia can be a result of genetic changes associated with protein tyrosine kinase activity such as in MPL W515L and BCR/ABL genes. However, the current conventional treatment of leukemia produces severe side effects that urge the approach to use natural products. A medicinal mushroom, Lignosus rhinocerus shows potential as an anti-cancer treatment. To investigate the efficacy and mechanism of action of the L. rhinocerus cultivar (TM02®) extract on leukemogenic tyrosine kinase cell lines, a cold-water extract (CWE) was produced by using TM02® sclerotia powder at 4°C. The carbohydrate and protein contents were found to be 77.24% and 1.75% respectively. In comparison to the normal Ba/F3 cell, the CWE TM02® shows significant effects on exhibiting proliferation of Ba/F3 expressed MPL W515L and BCR/ABL, possibly due to the presence of phenolic compounds and antioxidant properties of TM02®, which contribute to act on various signaling pathways, and the reported apoptotic activity of CWE TM02®. In contrast, CWE TM02® significantly exhibited high scavenging activity of both Ba/F3 expressed MPL W515L and BCR/ABL. At concentrations of 125 μg/mL and 500 μg/mL of CWE TM02® decreased 49.5% and 67.5% of cell migration activity of Ba/F3 expressed MPL W515L and BCR/ABL respectively. Therefore, we postulate that CWE TM02® has the capability to mediate the migration route of the leukemogenic tyrosine kinase cell lines.
    Matched MeSH terms: Protein-Tyrosine Kinases
  7. Wong PF, Abubakar S
    Cell Mol Biol Lett, 2008;13(3):375-90.
    PMID: 18311544 DOI: 10.2478/s11658-008-0009-6
    Malignant prostate tissues have markedly reduced zinc (Zn(2+)) contents in comparison to non-malignant tissues. In this study, we restored a high intracellular Zn(2+) level to LNCaP prostate cancer cells by culturing the cells in a growth medium supplemented with a supraphysiological concentration of Zn(2+) (10 microg/ml) over 5 weeks. The intracellular Zn(2+) level increased in the Zn(2+)-treated cells, and there was a marked increase in the presence of zincosomes, a Zn(2+)-specific intracellular organelle. The proliferation rate of the Zn(2+)-treated cells was markedly reduced. There was also a significant increase (36.6% +/- 6.4%) in the total tyrosine phosphorylated proteins. Vaccinia H1-related (VHR) phosphatase, zeta chain-associated protein-70 (ZAP-70) kinase and phosphorylated extracellular signal-regulated protein kinase 1 and 2 (p-ERK 1 and 2) were also present in higher abundance. Treatment with TPEN, which chelates Zn(2+), reduced the abundance of VHR phosphatase and ZAP-70 kinase, but increased the abundance of p-ERK 1. However, the TPEN treatment restored the Zn(2+)-treated LNCaP cell proliferation to a rate comparable to that of the non Zn(2+)-treated cells. These results highlight the importance of a high intracellular Zn(2+) content and the VHR/ZAP-70-associated pathways in the modulation of LNCaP prostate cancer cell growth.
    Matched MeSH terms: Protein-Tyrosine Kinases/metabolism; Protein Tyrosine Phosphatases/metabolism; ZAP-70 Protein-Tyrosine Kinase/metabolism*
  8. Tee SK, Ong TL, Aris A, See SML, Leong HY, Khalid MKNM, et al.
    Seizure, 2019 Apr;67:78-81.
    PMID: 30947044 DOI: 10.1016/j.seizure.2019.03.012
    Matched MeSH terms: Protein Tyrosine Phosphatases, Non-Receptor/genetics*
  9. Mphahlele MJ, Paumo HK, Choong YS
    Pharmaceuticals (Basel), 2017 Nov 20;10(4).
    PMID: 29156606 DOI: 10.3390/ph10040087
    Series of the 2-unsubstituted and 2-(4-chlorophenyl)-substituted 4-anilino-6-bromoquinazolines and their 6-(4-fluorophenyl)-substituted derivatives were evaluated for in vitro cytotoxicity against MCF-7 and HeLa cells. The 2-unsubstituted 4-anilino-6-bromoquinazolines lacked activity, whereas most of their 2-(4-chlorophenyl) substituted derivatives were found to exhibit significant cytotoxicity and selectivity against HeLa cells. Replacement of bromine with 4-fluorophenyl group for the 2-unsubstituted 4-anilinoquinazolines resulted in superior activity against HeLa cells compared to Gefitinib. The presence of a 4-fluorophenyl group in the 2-(4-chlorophenyl) substituted derivatives led to increased cytotoxicity against HeLa cells, except for the 3-chloroanilino derivative. The most active compounds, namely, 3g, 3l, and 4l, were found to exhibit a moderate to significant inhibitory effect against epidermal growth factor receptor tyrosine kinase (EGFR-TK). The EGFR molecular docking model suggested that these compounds are nicely bound to the region of EGFR.
    Matched MeSH terms: Tyrosine; Receptor Protein-Tyrosine Kinases
  10. Vijayanathan Y, Hamzah NM, Lim SM, Lim FT, Tan MP, Majeed ABA, et al.
    Brain Res Bull, 2022 Nov;190:218-233.
    PMID: 36228872 DOI: 10.1016/j.brainresbull.2022.10.001
    In order to understand the biological processes underlying dopaminergic neurons (DpN) regeneration in a 6-hydroxydopamine(6-OHDA)-induced adult zebrafish-based Parkinson's disease model, this study investigated the specific phases of neuroregeneration in a time-based manner. Bromodeoxyuridine (BrdU) was administered 24 h before the harvest of brain tissues at day three, five, seven, nine, 12 and 14 postlesion. Potential migration of proliferative cells was tracked over 14 days postlesion through double-pulse tracking [BrdU and 5-ethynyl-2'-deoxyuridine (EdU)] of cells and immunohistostaining of astrocytes [glial fibrillary acidic protein (GFAP)]. Gene expression of foxa2 and nurr1 (nr4a2a) at day three, nine, 14, 18, 22 and 30 postlesion was quantified using qPCR. Protein expression of foxa2 at day three, seven, 14 and 22 postlesion was validated using the western blot technique. Double labelling [EdU and tyrosine hydroxylase (TH)] of proliferative cells was performed to ascertain their fate after the neuroregeneration processes. It was found that whilst cell proliferation remained unchanged in the area of substantial DpN loss, the ventral diencephalon (vDn), there was a transient increase of cell proliferation in the olfactory bulb (OB) and telencephalon (Tel) seven days postlesion. BrdU-immunoreactive (ir)/ EdU-ir cells and activated astrocytes were later found to be significantly increased in the vDn and its nearby area (Tel) 14 days postlesion. There was a significant but transient downregulation of foxa2 at day three and nine postlesion, and nr4a2a at day three, nine and 14 postlesion. The expression of both genes remained unchanged in the OB and Tel. There was a transient downregulation of foxa2 protein expression at day three and seven postlesion. The significant increase of EdU-ir/ TH-ir cells in the vDn 30 days postlesion indicates maturation of proliferative cells (formed between day five-seven postlesion) into DpN. The present findings warrant future investigation of critical factors that govern the distinctive phases of DpN regeneration.
    Matched MeSH terms: Tyrosine 3-Monooxygenase/metabolism
  11. Awang-Kechik NH, Ahmad R, Doustjalali SR, Sabet NS, Abd-Rahman AN
    J Clin Exp Dent, 2019 Mar;11(3):e269-e274.
    PMID: 31001398 DOI: 10.4317/jced.55546
    Background: The biological responses involved during retention phase have been studied for many years but little is known about the effect of saliva proteome during retention phase of post-orthodontic treatment. This study aims to identify the protein profiles during retention phase in relation to biological processes involved by Liquid Chromatography Mass Spectrometry (LC-MS) approach.

    Material and Methods: A total of 5 ml of unstimulated saliva was collected from each subject (10 non-orthodontic patients and 15 post-orthodontic patients with 6-months retention phase). Samples were then subjected to LC-MS analysis. The expressed proteins were identified and compared between groups. Incisor irregularity for both maxilla and mandible were determined with Little's Irregularity Index at 6-months retention phase.

    Results: 146 proteins and 135 proteins were expressed in control and 6-months retention phase group respectively. 15 proteins were identified to be co-expressed between groups. Immune system process was only detected in 6-months retention phase group. Detected protein in immune system process was identified as Tyrosine-protein kinase Tec. Statistical significant of incisor irregularity was only found in mandible at 6-months retention phase.

    Conclusions: Our study suggests that immune system process protein which is Tyrosine-protein kinase Tec could be used as biomarker for prediction of stability during retention phase of post-orthodontic treatment. Key words:Orthodontics, proteomics, retention, LC-MS, saliva.

    Matched MeSH terms: Protein-Tyrosine Kinases; Tyrosine
  12. Romdhoni AC, Rajanagara AS, Albab CF, Waskito LA, Wibowo IN, Yunus MRM
    Asian Pac J Cancer Prev, 2024 Jul 01;25(7):2211-2218.
    PMID: 39068551 DOI: 10.31557/APJCP.2024.25.7.2211
    OBJECTIVE: One of the biggest therapy challenges for nasopharyngeal cancer (NPC) is still radioresistance.  The radioresistance in NPC is thought to be caused by cyclin D1 overexpression.  The purpose of this study was to determine how cyclin D1 contributes to radiation resistance in NPC.

    METHODS: Adhering to the PRISMA guidelines, we systematically reviewed studies on cyclin D1-associated radioresistance in NPC from 2012 until 2023.  From our search, 15 studies were included.

    RESULTS: Cyclin D1's role in radiotherapy resistance is elucidated through several mechanisms, notably SHP-1 and B-catenin. Overexpression of SHP-1 led to an increase in cyclin D1, a higher proportion of cells in the S-phase, and radioresistance.  Conversely, inhibiting β-catenin and cyclin D1 expression enhances radiation sensitivity.

    CONCLUSION: In conclusion, Cyclin D1 has a strong correlation with radiation resistance; downregulation of the protein increases radiosensitivity, while overexpression of the protein promotes radioresistance.

    Matched MeSH terms: Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism
  13. Faiz M, Rashid F
    Malays J Pathol, 2023 Aug;45(2):205-214.
    PMID: 37658530
    INTRODUCTION: Mutations in FLT3 are the most commonly reported genetic changes in AML patients. These mutations are normally identified in approximately one third of newly diagnosed patients and are reported to have prognostic significance.

    MATERIALS AND METHODS: Peripheral blood samples was collected from 63 AML patients to study their morphological, cytogenetic and molecular features. PCR was used to determine the prevalence of FLT3 mutations; internal tandem duplication (ITD) and tyrosine kinase domain (TKD) in AML patients.

    RESULTS: Among 63 AML patients, 42 were males and 21 were females with male to female ratio 2:1 with median age of 32 years. AML-M2 was the predominant French-American-British (FAB) subtype (42%) followed by M4 (27%), M3 (8%), M1 (8%), M0 (8%) and M5 (7%) respectively. Cytogenetic analysis of 60 patients showed 58% as cytogenetically normal (CN) whereas 42% had aberrant karyotype.The most frequent aberrations were trisomy8, t(8;21), t(15;17) (8.3%) each, inversion16 (5%), and different deletions (12%) respectively. FAB-M4 subtype showed most of the chromosomal anomalies. Among 63 AML patients, 22% showed FLT3/ITD while 6.4% had D835 mutation after molecular analysis. FLT3 mutations were found in most of the FAB subtypes and cytogenetic groups. FLT3/ITD mutations were more common in patients with normal karyotype (26%) and usually present with hyperleukocytosis but association between two was not significant.

    CONCLUSION: The cytogenetic data of adult AML from Pakistan showed presence of favourable prognostic karyotype with comparable prevalence as reported in international data. Moreover, FLT3/ITD mutations are commonly found in our patients as determined by molecular analysis. Therefore, inclusion of this unfavourable prognostic marker should be routine in molecular diagnostic testing of AML.

    Matched MeSH terms: fms-Like Tyrosine Kinase 3/genetics
  14. Kollu U, Avula VKR, Vallela S, Pasupuleti VR, Zyryanov GV, Neelam YS, et al.
    Bioorg Chem, 2021 06;111:104837.
    PMID: 33812281 DOI: 10.1016/j.bioorg.2021.104837
    A new series of urea/thiourea derivatives have been efficiently synthesized from the reaction of L-3-hydroxytyrosine with selective isocyanates/isothiocyanates and characterized by Infra-red, proton & carbon-13 nuclear magnetic resonance spectral and mass spectrometry studies. All the synthesized compounds have been screened for their antioxidant activity by 1,1-diphenyl1-2-picrylhydrazyl radical assay, ferric reducing antioxidant power assay and also studied their molecular docking interaction profiles against 1N8Q and 3NRZ enzymatic proteins. The in vitro antioxidant activity has further supported by quantitative structure activity relationship, absorption, distribution, metabolism, and excretion & toxicity studies, bioactivity studies & enzyme inhibition assay and identified that they were potentially bound to ASP490 & ASP361 aminoacid residue in chain A of 1N8Q protein and GLN1194 aminoacid residue in chain L of 3NRZ protein and are responsible for potential antioxidant activity. It is proved that urea derivatives linked with 4-fluoro & 4-nitro and thiourea derivatives linked with 3-chloro & 4-fluoro have exhibited promising antioxidant activity. In eventual synthesized compounds have been identified as potential blood-brain barrier penetrable compounds and proficient central nervous system active neuro-protective antioxidant agents as they have envisaged as easily penetrable to blood-brain barrier thresholds, a neuroprotective property.
    Matched MeSH terms: Tyrosine/chemical synthesis; Tyrosine/pharmacology*; Tyrosine/chemistry
  15. Cho BC, Kim DW, Batra U, Park K, Kim SW, Yang CT, et al.
    Cancer Res Treat, 2023 Jan;55(1):83-93.
    PMID: 35344649 DOI: 10.4143/crt.2021.1571
    PURPOSE: Previous report from the ASCEND-8 trial showed consistent efficacy with less gastrointestinal (GI) toxicity in patients with anaplastic lymphoma kinase-rearranged (ALK+) advanced/metastatic non-small cell lung cancer (NSCLC) treated with ceritinib 450-mg with food compared with 750-mg fasted. In this subgroup analysis, we report outcomes in Asian patients of the ASCEND-8 trial.

    MATERIALS AND METHODS: Key efficacy endpoints were blinded independent review committee (BIRC)-assessed overall response rate (ORR) and duration of response (DOR) evaluated per Response Evaluation Criteria in Solid Tumors v1.1. Other efficacy endpoints were investigator-assessed ORR and DOR; BIRC- and investigator-assessed progression-free survival (PFS) and disease control rate; overall survival (OS). Safety was evaluated by frequency and severity of adverse events.

    RESULTS: At final data cutoff (6 March 2020), 198 treatment-naïve patients were included in efficacy analysis, of which 74 (37%) comprised the Asian subset; 450-mg fed (n=29), 600-mg fed (n=19), and 750-mg fasted (n=26). Baseline characteristics were mostly comparable across study arms. At baseline, more patients in 450-mg fed arm (44.8%) had brain metastases than in 750-mg fasted arm (26.9%). Per BIRC, patients in the 450-mg fed arm had a numerically higher ORR, 24-month DOR rate and 24-month PFS rate than the 750-mg fasted arm. The 36-month OS rate was 93.1% in 450-mg fed arm and 70.9% in 750-mg fasted arm. Any-grade GI toxicity occurred in 82.8% and 96.2% of patients in the 450-mg fed and 750-mg fasted arms, respectively.

    CONCLUSION: Asian patients with ALK+ advanced/metastatic NSCLC treated with ceritinib 450-mg fed showed numerically higher efficacy and lower GI toxicity than 750-mg fasted patients.

    Matched MeSH terms: Receptor Protein-Tyrosine Kinases
  16. Singh S, Ganesh S
    J Hum Genet, 2012 May;57(5):283-5.
    PMID: 22456482 DOI: 10.1038/jhg.2012.29
    Lafora progressive myoclonus epilepsy, also known as Lafora disease (LD), is the most severe and fatal form of progressive myoclonus epilepsy with its typical onset during the late childhood or early adolescence. LD is characterized by recurrent epileptic seizures and progressive decline in intellectual function. LD can be caused by defects in any of the two known genes and the clinical features of these two genetic groups are almost identical. The past one decade has witnessed considerable success in identifying the LD genes, their mutations, the cellular functions of gene products and on molecular basis of LD. Here, we briefly review the current literature on the phenotype variations, on possible presence of genetic modifiers, and candidate modifiers as targets for therapeutic interventions in LD.
    Matched MeSH terms: Protein Tyrosine Phosphatases, Non-Receptor/genetics*; Protein Tyrosine Phosphatases, Non-Receptor/metabolism
  17. Hu J, Chan LF, Souza RP, Tampakeras M, Kennedy JL, Zai C, et al.
    Neurosci Lett, 2014 Jan 24;559:39-43.
    PMID: 24275212 DOI: 10.1016/j.neulet.2013.11.025
    Evidence has shown that attempted suicide in psychiatric disorders is a complex interplay of genes and environment. Noradrenergic dysfunction due to abnormalities in the tyrosine hydroxylase (TH) gene has been implicated in the pathogenesis of suicidal behavior in mood disorders. However, suicide is a leading cause of mortality in schizophrenia too. Recent evidence suggests that TH gene variants may also increase the risk of suicide attempts in schizophrenia patients, although the interaction with established clinical risk factors is unclear. This study aimed to identify TH gene variants conferring risk for suicide attempt in schizophrenia while accounting for the interaction between this gene and clinical risk factors. We performed analysis on four TH SNPs (rs11564717, rs11042950, rs2070762, rs689) and the common TCAT repeat (UniSTS:240639) for 234 schizophrenia patients (51 suicide attempters and 183 non-attempters). Clinical risk factors and ethnic stratification were included as covariates. Single marker analysis identified the SNP rs11564717 (p=0.042) and the TCAT(6) (p=0.004) as risk variants for suicide attempt. We also identified the haplotype A-A-A-G as a risk factor for suicide attempt (p=0.0025). In conclusion, our findings suggest that TH polymorphisms may contribute to the risk of attempted suicide in schizophrenia even after accounting for established clinical risk factors and ethnic stratification. Further larger scale studies are needed to confirm these findings and to understand the mechanisms underlying the role of TH gene variants in suicide attempt in schizophrenia.
    Matched MeSH terms: Tyrosine 3-Monooxygenase/genetics*; Tyrosine 3-Monooxygenase/physiology
  18. Baharuddin FF, Mad Nasir N, Tejo BA, Koh SP, Ramakrishnan S, Nordin NQAA, et al.
    J Asian Nat Prod Res, 2024 May;26(5):575-582.
    PMID: 37796247 DOI: 10.1080/10286020.2023.2264784
    Tyrosinase inhibitors can reduce melanin production for skin whitening, but some existing products may harm the skin. This study discovered six compounds that inhibit tyrosinase in the mushroom Agaricus bisporus by over 50%. Compound 11 displayed strong inhibition (92.2% and 86.7%) for L-tyrosine and L-DOPA substrates, while compound 13 showed high inhibition (96.0% and 62.0%) for both substrates. Molecular docking simulations revealed compounds 11 and 13 bind at the allosteric site of the enzyme. Xanthone derivatives, based on these findings, hold potential as safe skin whitening agents and for pigmentation-related diseases in the cosmetic industry.
    Matched MeSH terms: Tyrosine/pharmacology; Tyrosine/chemistry
  19. Soo R, Mery L, Bardot A, Kanesvaran R, Keong TC, Pongnikorn D, et al.
    ESMO Open, 2022 Oct;7(5):100560.
    PMID: 35988454 DOI: 10.1016/j.esmoop.2022.100560
    BACKGROUND: Lung cancer is the second most common cancer and leading cause of cancer mortality worldwide. Recent advances in molecular testing and targeted therapy have improved survival among patients with metastatic non-small-cell lung cancer (NSCLC). We sought to quantify and describe molecular testing among metastatic non-squamous NSCLC cases in selected Southeast Asian countries and describe first-line therapy chosen.

    PATIENTS AND METHODS: A retrospective study was conducted based on incident lung cancer cases diagnosed between 2017 and 2019 in Lampang (Thailand), Penang (Malaysia), Singapore and Yogyakarta (Indonesia). Cases (n = 3413) were defined using the International Classification of Diseases for Oncology third edition. In Singapore, a clinical series obtained from the National Cancer Centre was used to identify patients, while corresponding population-based cancer registries were used elsewhere. Tumor and clinical information were abstracted by chart review according to a predefined study protocol. Molecular testing of epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK) gene rearrangement, ROS1 gene rearrangement and BRAF V600 mutation was recorded.

    RESULTS: Among 2962 cases with a specified pathological diagnosis (86.8%), most patients had non-squamous NSCLC (75.8%). For cases with staging information (92.1%), the majority presented with metastatic disease (71.3%). Overall, molecular testing rates in the 1528 patients with stage IV non-squamous NSCLC were 67.0% for EGFR, 42.3% for ALK, 39.1% for ROS1, 7.8% for BRAF and 36.1% for PD-L1. Among these patients, first-line systemic treatment included chemotherapy (25.9%), targeted therapy (35.6%) and immunotherapy (5.9%), with 31% of patients having no record of antitumor treatment. Molecular testing and the proportion of patients receiving treatment were highly heterogenous between the regions.

    CONCLUSIONS: This first analysis of data from a clinically annotated registry for lung cancer from four settings in Southeast Asia has demonstrated the feasibility of integrating clinical data within population-based cancer registries. Our study results identify areas where further development could improve patient access to optimal treatment.

    Matched MeSH terms: Protein-Tyrosine Kinases/genetics; Protein-Tyrosine Kinases/therapeutic use
  20. Azlan A, Khor KZ, Rajasegaran Y, Rosli AA, Said MSM, Yusoff NM, et al.
    Med Oncol, 2023 Jun 21;40(7):208.
    PMID: 37341821 DOI: 10.1007/s12032-023-02075-w
    Reactive oxygen species (ROS) homeostasis is crucial for leukaemogenesisand deregulation would hamper leukaemic progression. Although the regulatory effects of RUNX1/ETO has been extensively studied, its underlying molecular mechanims in ROS production in t(8,21) AML is yet to be fully elucidated. Here, we report that RUNX1/ETO could directly control FLT3 by occupying several DNA elements on FLT3 locus. The possible hijacking mechanism by RUNX1/ETO over FLT3 mediated ROS modulation in AML t(8;21) was made apparent when suppression of RUNX1/ETO led to decrement in ROS levels and the direct oxidative marker FOXO3 but not in FLT3 and RAC1 suppressed t(8,21) AML cell line Furthermore, nuclear import of RUNX1/ETO was aberrated following RUNX1/ETO and RAC1 suppression suggesting association in ROS control. A different picture was depicted in non t(8;21) cells where suppression of RAC1 and FLT3 led to decreased levels of FOXO3a and ROS. Results alltogether indicate a possible dysregulation of ROS levels by RUNX1/ETO in t(8,21) AML.
    Matched MeSH terms: fms-Like Tyrosine Kinase 3/genetics; fms-Like Tyrosine Kinase 3/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links