Displaying all 14 publications

Abstract:
Sort:
  1. Betterton C, Lim BL
    PMID: 816008
    Neodiplostomum (Conodiplostomum) Brachylaima, Ectosiphonus and Euparadistomum are reported for the first time from small mammals in Malaysia. New host and locality records are given for Echinostoma, Achillurbainia, Beaveria, Odeningotrema, Leipertrema, Athesmia, Skrjabinus and Zonorchis. Possible-life-cycles of the parasites are discussed in relation to the ecology and feeding habits of the hosts.
    Matched MeSH terms: Tupaiidae/parasitology*
  2. Endo H, Cuisin J, Nadee N, Nabhitabhata J, Suyanto A, Kawamoto Y, et al.
    J Vet Med Sci, 1999 Sep;61(9):1027-31.
    PMID: 10535508
    Geographical variation was examined morphologically in the common tree shrew (Tupaia glis) in some Indochinese and Malayan regions. Osteometrical examination and principal component analysis elucidated the morphological differences among various populations. The populations from southern and western Thailand were distinguished morphologically from the other populations. Variation in males from south Thailand and Kuala Lumpur suggests that the Isthmus of Kra may have an influence on the variation of skull morphology. However, the Isthmus of Kra was not completely considered as a factor of geographical separation in this species, because we could not confirm the separation in skull size and shape between the localities at least in females. While, the Kanchanaburi population in western Thailand was significantly smaller than the other population in skull size, and constituted the morphologically separable group in our study.
    Matched MeSH terms: Tupaiidae/anatomy & histology*
  3. Clarke C, Moran JA, Chin L
    Plant Signal Behav, 2010 Oct;5(10):1187-9.
    PMID: 20861680
    Three species of Nepenthes pitcher plants from Borneo engage in a mutualistic interaction with mountain tree shrews, the basis of which is the exchange of nutritional resources. The plants produce modified "toilet pitchers" that produce copious amounts of exudates, the latter serving as a food source for tree shrews. The exudates are only accessible to the tree shrews when they position their hindquarters over the pitcher orifice. Tree shrews mark valuable resources with faeces and regularly defecate into the pitchers when they visit them to feed. Faeces represent a valuable source of nitrogen for these Nepenthes species, but there are many facets of the mutualism that are yet to be investigated. These include, but are not limited to, seasonal variation in exudate production rates by the plants, behavioral ecology of visiting tree shrews, and the mechanism by which the plants signal to tree shrews that their pitchers represent a food source. Further research into this extraordinary animal-plant interaction is required to gain a better understanding of the benefits to the participating species.
    Matched MeSH terms: Tupaiidae/physiology*
  4. Clarke CM, Bauer U, Lee CC, Tuen AA, Rembold K, Moran JA
    Biol Lett, 2009 Oct 23;5(5):632-5.
    PMID: 19515656 DOI: 10.1098/rsbl.2009.0311
    Nepenthes pitcher plants are typically carnivorous, producing pitchers with varying combinations of epicuticular wax crystals, viscoelastic fluids and slippery peristomes to trap arthropod prey, especially ants. However, ant densities are low in tropical montane habitats, thereby limiting the potential benefits of the carnivorous syndrome. Nepenthes lowii, a montane species from Borneo, produces two types of pitchers that differ greatly in form and function. Pitchers produced by immature plants conform to the 'typical' Nepenthes pattern, catching arthropod prey. However, pitchers produced by mature N. lowii plants lack the features associated with carnivory and are instead visited by tree shrews, which defaecate into them after feeding on exudates that accumulate on the pitcher lid. We tested the hypothesis that tree shrew faeces represent a significant nitrogen (N) source for N. lowii, finding that it accounts for between 57 and 100 per cent of foliar N in mature N. lowii plants. Thus, N. lowii employs a diversified N sequestration strategy, gaining access to a N source that is not available to sympatric congeners. The interaction between N. lowii and tree shrews appears to be a mutualism based on the exchange of food sources that are scarce in their montane habitat.
    Matched MeSH terms: Tupaiidae/physiology*
  5. Durden LA, DeBruyn EJ
    Lab. Anim. Sci., 1984 Apr;34(2):188-90.
    PMID: 6727291
    Nine adult tree shrews, Tupaia glis, recently imported from West Malaysia were visually examined for ectoparasites while under general anesthesia. Three shrews were infested by the sucking louse, Sathrax durus , and six shrews had louse ova belonging to this species; two shrews had neither lice nor ova. A total of 20 adult female, 10 adult male, and three third instar nymphal lice was collected. Lice were located on the head, flanks, and dorsal body of shrews while ova were recorded mainly from the anterior flanks but also from some adjacent host sites. The tree shrews appeared to tolerate the lice well although louse vector capacity was not assessed. The last date that lice were recorded from shrews was 22 days after colony set-up, and the last date on which seemingly viable ova were recorded was 64 days after set-up showing that the infestations were ultimately lost.
    Matched MeSH terms: Tupaiidae/parasitology*
  6. Chin L, Moran JA, Clarke C
    New Phytol, 2010 Apr;186(2):461-70.
    PMID: 20100203 DOI: 10.1111/j.1469-8137.2009.03166.x
    *Three Bornean pitcher plant species, Nepenthes lowii, N. rajah and N. macrophylla, produce modified pitchers that 'capture' tree shrew faeces for nutritional benefit. Tree shrews (Tupaia montana) feed on exudates produced by glands on the inner surfaces of the pitcher lids and defecate into the pitchers. *Here, we tested the hypothesis that pitcher geometry in these species is related to tree shrew body size by comparing the pitcher characteristics with those of five other 'typical' (arthropod-trapping) Nepenthes species. *We found that only pitchers with large orifices and lids that are concave, elongated and oriented approximately at right angles to the orifice capture faeces. The distance from the tree shrews' food source (that is, the lid nectar glands) to the front of the pitcher orifice precisely matches the head plus body length of T. montana in the faeces-trapping species, and is a function of orifice size and the angle of lid reflexion. *Substantial changes to nutrient acquisition strategies in carnivorous plants may occur through simple modifications to trap geometry. This extraordinary plant-animal interaction adds to a growing body of evidence that Nepenthes represents a candidate model for adaptive radiation with regard to nitrogen sequestration strategies.
    Matched MeSH terms: Tupaiidae/anatomy & histology*
  7. Chabaud AG, Krishnasamy M
    Ann Parasitol Hum Comp, 1975 Nov-Dec;50(6):813-20.
    PMID: 1227382
    Description of Trichospirura willmottae n. sp. parasite of the salivary ducts of Tupaia glis and T. sp. (single virgin female) parasite of the intestine of Myotis mystacinus in Malaysia. The two species are very closely related to the type species, a parasite of the pancreatic ducts of brasilian Primates, and can be differentiated mainly by the mensurations of the posterior extremities of the bodies. While the genus Rhabdochoma, parasite of the intestine of fresh-water fishes, underwent a very similar, but more or less pronounced, morphological evolution, it became adapted to many different hosts: Sea-fishes, Saurians, Mammals and to many locations. This evolutionary line includes six genera; Trichospirura, the only parasite in Mammals, is one of the more evolved. Some remarks are made on the host-distribution of Trichospirura, on the relationships between Rabdochonidae and Cystidicolidae and on the osmo-excretory apparatus of Trichospirura. The hypertrophy of this apparatus, which could be the consequence of the passage during the course of evolution from aquatic to terrestrial life, is comparable to that of the Pneumospirurinae.
    Matched MeSH terms: Tupaiidae/parasitology
  8. Quentin JC, Krishnasamy M
    Ann Parasitol Hum Comp, 1975 Nov-Dec;50(6):795-812.
    PMID: 818936
    Morphological study of two Spirura parasites of the oesophageal and the gastric wall of Tupaia and Nycticebus in Malaysia. -- Spirura malayensis n. sp. is found both in Tupaia in the District of Selangor (West Malaysia) and in Nycticebus coucang in Borneo. Its very primitive characteristics relate it to S. diplocyphos Chabaud, Brygoo and Petter, 1965, parasite of lemurs from Madagascar. Its larval development was obtained experimentally in Blatella germanica. -- Spirura aurangabadensis (Ali and Lovekar, 1966) described from a microchiroptera in India is found in west Malaysia in a Nycticebus coucang, and in a Tupaia glis. -- The distribution of the different species and the comparative study of the larval and adult cephalic structures show that the genus Spirura arose and became diversified in the old world in very primitive hosts according to two main evolutive lines.
    Matched MeSH terms: Tupaiidae/parasitology*
  9. Yusof MA, Mohd-Taib FS, Ishak SN, Md-Nor S, Md-Sah SA, Mohamed NZ, et al.
    Ecohealth, 2019 06;16(2):260-274.
    PMID: 31124020 DOI: 10.1007/s10393-019-01419-1
    Leptospirosis, a widespread zoonotic disease, is a public health problem, especially in major urban centres, and is mainly reported to be associated with rats. In Malaysia, focus has been primarily given to the Leptospira prevalence in rodents per se, but there is lack of information on the microhabitat structure of the outbreak areas. We aimed to determine the diversity of small mammal species, microhabitat types, and their prevalence of pathogenic Leptospira spp. in the outbreak areas, which were categorized as urban, semi-urban, and recreational forests. Sampling involved deploying 100 to 300 live traps at each study site. Kidney samples were extracted from selected individuals, for screening of pathogenic Leptospira spp. by PCR. Out of 537 individuals from 15 small mammal species captured, 4 species were recorded from urban, 13 from semi-urban, and 11 from recreational forest sites. From 389 individuals screened, 58 were tested positive for pathogenic Leptospira. Recreational forests recorded the highest prevalence with 19.4% (n = 93), followed by urban, 16.6% (n = 163) and semi-urban sites with 9.8% (n = 133). Seven rodent species were tested positive for pathogenic Leptospira from all areas. R. norvegicus was found to harbour the highest prevalence (66.7%) in urban, R. rattus (53.8%) in semi-urban, whereby M. whiteheadi (44.4%) in recreational forest sites. Microhabitat analysis revealed that rubbish quantity contributed especially strongly to a high prevalence of Leptospira. This study contributes to understanding of the host and microhabitat preferences of Leptospira, which is important in controlling the spread of this disease in human's landscapes.
    Matched MeSH terms: Tupaiidae/microbiology
  10. Khani A, Mustafar F, Rainer G
    Cell Rep, 2018 05 22;23(8):2405-2415.
    PMID: 29791851 DOI: 10.1016/j.celrep.2018.04.076
    Despite well-known privileged perception of dark over light stimuli, it is unknown to what extent this dark dominance is maintained when visual transients occur in rapid succession, for example, during perception of moving stimuli. Here, we address this question using dark and light transients presented at different flicker frequencies. Although both human participants and tree shrews exhibited dark dominance for temporally modulated transients, these occurred at different flicker frequencies, namely, at 11 Hz in humans and 40 Hz and higher in tree shrews. Tree shrew V1 neuronal activity confirmed that differences between light and dark flicker were maximal at 40 Hz, corresponding closely to behavioral findings. These findings suggest large differences in flicker perception between humans and tree shrews, which may be related to the lifestyle of these species. A specialization for detecting dark transients at high temporal frequencies may thus be adaptive for tree shrews, which are particularly fast-moving small mammals.
    Matched MeSH terms: Tupaiidae
  11. Betterton C
    J Helminthol, 1980 Dec;54(4):241-5.
    PMID: 7194895
    Euparadistomum is described from 7 species of small mammal in Malaysia. The worms display characteristics intermediate between E. buckleyi Singh and E. pearsoni Talbot particularly with regard to body shape and arrangement of vitelline fields. The nature of morphological variation is discussed and comment made on the possible life-cycle of the parasite.
    Matched MeSH terms: Tupaiidae/parasitology*
  12. Asyikha R, Sulaiman N, Mohd-Taib FS
    Trop Biomed, 2020 Dec 01;37(4):919-931.
    PMID: 33612746 DOI: 10.47665/tb.37.4.919
    Bacteria of the genus Bartonella have been known as emerging zoonotic pathogens for several human diseases including cat scratch disease, Carrion's disease and trench fever. Numerous species of small mammals have been reported to play a role as a suitable reservoir to many pathogenic Bartonella. These infections are thought to be transmitted through blood-feeding arthropod vectors such as ticks, fleas and lice. The purpose of this study is to detect the presence of Bartonella species from tick samples collected from small mammals in mangrove forests of Peninsular Malaysia. Herein, 38 individual ticks and their small mammals host were evaluated for the presence of Bartonella DNA by conventional PCR targeting the 16S rRNA intergenic spacer region (ITS) and partial sequencing of 460 bp from this locususing Bartonella genus-specific primers. Two tick individuals from Dermacentor auratus and Haemaphysalis hystricis collected from Rattus tiomanicus (host), were PCR-positive for Bartonella DNA amplification. No Bartonella amplification was possible in other tick species (Amblyomma sp.). Phylogenetic analysis of ITS fragments demonstrated that the sequences from ticks were closely related to Bartonella phoceensis, a species that has been reported from black rats (Rattus rattus) in Australia. This is the first report of a Bartonella bacteria detected in ticks from small mammals in Malaysia. Further research should be warranted to investigate the transmission of Bartonella and the potential impact of this zoonotic pathogen in animals and humans as this mangrove ecosystem is significant for local economy and tourism.
    Matched MeSH terms: Tupaiidae/microbiology
  13. Mustafar F, Harvey MA, Khani A, Arató J, Rainer G
    eNeuro, 2018 07 11;5(4).
    PMID: 30073190 DOI: 10.1523/ENEURO.0167-18.2018
    Our understanding of the neurobiological underpinnings of learning and behavior relies on the use of invasive techniques, which necessitate the use of animal models. However, when different species learn the same task, to what degree are they actually producing the same behavior and engaging homologous neural circuitry? This question has received virtually no recent attention, even as the most powerful new methodologies for measuring and perturbing the nervous system have become increasingly dependent on the use of murine species. Here, we test humans, rats, monkeys, and an evolutionarily intermediate species, tree shrews, on a three alternative, forced choice, visual contrast discrimination task. As anticipated, learning rate, peak performance, and transfer across contrasts was lower in the rat compared to the other species. More interestingly, rats exhibited two major behavioral peculiarities: while monkeys and tree shrews based their choices largely on visual information, rats tended to base their choices on past reward history. Furthermore, as the task became more difficult, rats largely disengaged from the visual stimulus, reverting to innate spatial predispositions in order to collect rewards near chance probability. Our findings highlight the limitation of muridae as models for translational research, at least in the area of visually based decision making.
    Matched MeSH terms: Tupaiidae
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links