Displaying publications 1 - 20 of 31 in total

Abstract:
Sort:
  1. Maciver SK, Abdelnasir S, Anwar A, Siddiqui R, Khan NA
    Mol Biochem Parasitol, 2023 Feb;253:111541.
    PMID: 36603708 DOI: 10.1016/j.molbiopara.2022.111541
    Protistan parasitic infections contribute significantly to morbidity and mortality, causing more than 2 billion human infections annually. However, current treatments are often limited; due to ineffective drugs and drug resistance, thus better options are urgently required. In the present context, theranostics agents are those that offer simultaneous detection, diagnosis and even treatment of protistan parasitic diseases. "Nanotheranostics" is the term used to describe such agents, that are around 100 nm or less in size. Anti-parasitic activity of nanoparticles (NPs) has been reported, and many have useful intrinsic imaging properties, but it is perhaps their multifunctional nature that offers the greatest potential. NPs may be used as adapters onto which various subunits with different functions may be attached. These subunits may facilitate targeting parasites, coupled with toxins to eradicate parasites, and probe subunits for detection of particles and/or parasites. The modular nature of nano-platforms promises a "mix and match" approach for the construction of tailored agents by using combinations of these subunits against different protistan parasites. Even though many of the subunits have shown promise alone, these have not yet been put together convincingly enough to form working theranostics against protistan parasites. Although the clinical application of nanotheranostics to protistan parasitic infections in humans requires more research, we conclude that they offer not just a realisation of Paul Ehrlich's long imagined "magic bullet" concept, but potentially are magic bullets combined with tracer bullets.
    Matched MeSH terms: Theranostic Nanomedicine*
  2. Khandaker MU, Nagatsu K, Minegishi K, Zhang MR, Jalilian AR, Bradley DA
    Appl Radiat Isot, 2020 Sep 15;166:109428.
    PMID: 32979754 DOI: 10.1016/j.apradiso.2020.109428
    186gRe (T1/2 = 3.7183 d, E(β-)mean = 346.7 keV, I(β-)mean = 92.59%), a mixed beta and γ-emitter shows great potential for use in theranostic applications. The dominant 185Re(n,γ) route, via use of a nuclear reactor, provides 186gRe in carrier added form with low specific activity, while cyclotrons offer no carrier-added (NCA) high specific activity production of 186gRe. However, to be able to select the best possible nuclear reaction and to optimize the production route via the use of a cyclotron, information on the excitation function for the reaction of interest as well as for the competing reactions is necessary. Accordingly, we have conducted a detailed study of the excitation functions for natW(d, x) reactions in seeking optimized parameters for the NCA production of 186gRe. Noting a discrepancy among the experimental data, we made an evaluation of the available literature, finally selecting optimum parameters for the production of 186gRe via the 186W(d,2n)186Re reaction. These beam parameters were then used for batch production of 186gRe by irradiating an enriched 186W metallic powder target, followed by a subsequent automated chemical separation process. The preliminary results show 98.1% radionuclidic purity of 186gRe at 8 h subsequent to the End of Bombardment (EOB), offering the potential for use in clinical applications.
    Matched MeSH terms: Theranostic Nanomedicine
  3. Cabrera-Fuentes HA, Aragones J, Bernhagen J, Boening A, Boisvert WA, Bøtker HE, et al.
    Basic Res Cardiol, 2016 11;111(6):69.
    PMID: 27743118
    In this meeting report, particularly addressing the topic of protection of the cardiovascular system from ischemia/reperfusion injury, highlights are presented that relate to conditioning strategies of the heart with respect to molecular mechanisms and outcome in patients' cohorts, the influence of co-morbidities and medications, as well as the contribution of innate immune reactions in cardioprotection. Moreover, developmental or systems biology approaches bear great potential in systematically uncovering unexpected components involved in ischemia-reperfusion injury or heart regeneration. Based on the characterization of particular platelet integrins, mitochondrial redox-linked proteins, or lipid-diol compounds in cardiovascular diseases, their targeting by newly developed theranostics and technologies opens new avenues for diagnosis and therapy of myocardial infarction to improve the patients' outcome.
    Matched MeSH terms: Theranostic Nanomedicine/trends*
  4. Tan HY, Yeong CH, Wong YH, McKenzie M, Kasbollah A, Md Shah MN, et al.
    Nucl Med Biol, 2020;90-91:55-68.
    PMID: 33039974 DOI: 10.1016/j.nucmedbio.2020.09.005
    Theranostics in nuclear medicine refers to personalized patient management that involves targeted therapy and diagnostic imaging using a single or combination of radionuclide (s). The radionuclides emit both alpha (α) or beta (β-) particles and gamma (γ) rays which possess therapeutic and diagnostic capabilities, respectively. However, the production of these radionuclides often faces difficulties due to high cost, complexity of preparation methods and that the products are often sourced far from the healthcare facilities, hence losing activity due to radioactive decay during transportation. Subject to the availability of a nuclear reactor within an accessible distance from healthcare facilities, neutron activation is the most practical and cost-effective route to produce radionuclides suitable for theranostic purposes. Holmium-166 (166Ho), Lutetium-177 (177Lu), Rhenium-186 (186Re), Rhenium-188 (188Re) and Samarium-153 (153Sm) are some of the most promising neutron-activated radionuclides that are currently in clinical practice and undergoing clinical research for theranostic applications. The aim of this paper is to review the physical characteristics, current clinical applications and future prospects of these neutron activated radionuclides in theranostics. The production, physical properties, validated clinical applications and clinical studies for each neutron-activated radionuclide suitable for theranostic use in nuclear medicine are reviewed in this paper.
    Matched MeSH terms: Theranostic Nanomedicine
  5. Jeyamogan S, Khan NA, Siddiqui R
    Arch Med Res, 2021 02;52(2):131-142.
    PMID: 33423803 DOI: 10.1016/j.arcmed.2020.10.016
    The number of cancer cases worldwide in terms of morbidity and mortality is a serious concern, despite the presence of therapeutic interventions and supportive care. Limitations in the current available diagnosis methods and treatments methods may contribute to the increase in cancer mortality. Theranostics, is a novel approach that has opened avenues for the simultaneous precise diagnosis and treatment for cancer patients. Although still in the early development stage, theranostic agents such as quantum dots, radioisotopes, liposomes and plasmonic nanobubbles can be bound to anticancer drugs, cancer cell markers and imaging agents, with the support of available imaging techniques, provide the potential to facilitate diagnosis, treatment and management of cancer patients. Herein, we discuss the potential benefits of several theranostic tools for the management of cancer. Specifically, quantum dots, radio-labelled isotopes, liposomes and plasmonic nanobubbles coupled with targeting agents and/or anticancer molecules and imaging agents as theranostic agents are deliberated upon in this review. Overall, the use of theranostic agents shows promise in cancer management. Nevertheless, intensive research is required to realize these expectations.
    Matched MeSH terms: Theranostic Nanomedicine/methods*
  6. Wong XY, Sena-Torralba A, Álvarez-Diduk R, Muthoosamy K, Merkoçi A
    ACS Nano, 2020 03 24;14(3):2585-2627.
    PMID: 32031781 DOI: 10.1021/acsnano.9b08133
    Nanotheranostics is one of the biggest scientific breakthroughs in nanomedicine. Most of the currently available diagnosis and therapies are invasive, time-consuming, and associated with severe toxic side effects. Nanotheranostics, on the other hand, has the potential to bridge this gap by harnessing the capabilities of nanotechnology and nanomaterials for combined therapeutics and diagnostics with markedly enhanced efficacy. However, nanomaterial applications in nanotheranostics are still in its infancy. This is due to the fact that each disease has a particular microenvironment with well-defined characteristics, which promotes deeper selection criteria of nanomaterials to meet the disease needs. In this review, we have outlined how nanomaterials are designed and tailored for nanotheranostics of cancer and other diseases such as neurodegenerative, autoimmune (particularly on rheumatoid arthritis), and cardiovascular diseases. The penetrability and retention of a nanomaterial in the biological system, the therapeutic strategy used, and the imaging mode selected are some of the aspects discussed for each disease. The specific properties of the nanomaterials in terms of feasibility, physicochemical challenges, progress in clinical trials, its toxicity, and their future application on translational medicine are addressed. Our review meticulously and critically examines the applications of nanotheranostics with various nanomaterials, including graphene, across several diseases, offering a broader perspective of this emerging field.
    Matched MeSH terms: Theranostic Nanomedicine*
  7. Kesharwani P, Gothwal A, Iyer AK, Jain K, Chourasia MK, Gupta U
    Drug Discov Today, 2017 Jul 08.
    PMID: 28697371 DOI: 10.1016/j.drudis.2017.06.009
    Highly controllable dendritic structural design means dendrimers are a leading carrier in drug delivery applications. Dendrimer- and other nanocarrier-based hybrid systems are an emerging platform in the field of drug delivery. This review is a compilation of increasing reports of dendrimer interactions, such as dendrimer-liposome, dendrimer-carbon-nanotube, among others, known as hybrid carriers. This should prompt entirely new research with promising results for these hybrid carriers. It is assumed that such emerging hybrid nanosystems - from combining two already-established drug delivery platforms - could lead the way for the development of newer delivery systems with multiple applicability for latent theranostic applications in the future.
    Matched MeSH terms: Theranostic Nanomedicine
  8. Mishra V, Patil A, Thakur S, Kesharwani P
    Drug Discov Today, 2018 06;23(6):1219-1232.
    PMID: 29366761 DOI: 10.1016/j.drudis.2018.01.006
    Nanotechnology has gained significant interest from biomedical and analytical researchers in recent years. Carbon dots (C-dots), a new member of the carbon nanomaterial family, are spherical, nontoxic, biocompatible, and discrete particles less than 10nm in diameter. Research interest has focused on C-dots because of their ultra-compact nanosize, favorable biocompatibility, outstanding photoluminescence, superior electron transfer ability, and versatile surface engineering properties. C-dots show significant potential for use in cellular imaging, biosensing, targeted drug delivery, and other biomedical applications. Here we discuss C-dots, in terms of their physicochemical properties, fabrication techniques, toxicity issues, surface engineering and biomedical potential in drug delivery, targeting as well as bioimaging.
    Matched MeSH terms: Theranostic Nanomedicine
  9. Anwar A, Siddiqui R, Khan NA
    ACS Chem Neurosci, 2019 01 16;10(1):6-12.
    PMID: 30149693 DOI: 10.1021/acschemneuro.8b00321
    Pathogenic free-living amoebae including Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri cause infections of the central nervous system (CNS), which almost always prove fatal. The mortality rate is high with the CNS infections caused by these microbes despite modern developments in healthcare and antimicrobial chemotherapy. The low awareness, delayed diagnosis, and lack of effective drugs are major hurdles to overcome these challenges. Nanomaterials have emerged as vital tools for concurrent diagnosis and therapy, which are commonly referred to as theranostics. Nanomaterials offer highly sensitive diagnostic systems and viable therapeutic effects as a single modality. There has been good progress to develop nanomaterials based efficient theranostic systems against numerous kinds of tumors, but this field is yet immature in the context of infectious diseases, particularly parasitic infections. Herein, we describe the potential value of theranostic applications of nanomaterials against brain infections due to pathogenic amoebae.
    Matched MeSH terms: Theranostic Nanomedicine/methods*; Theranostic Nanomedicine/trends
  10. Tan YY, Yap PK, Xin Lim GL, Mehta M, Chan Y, Ng SW, et al.
    Chem Biol Interact, 2020 Sep 25;329:109221.
    PMID: 32768398 DOI: 10.1016/j.cbi.2020.109221
    Cancer continues to be one of the most challenging diseases to be treated and is one of the leading causes of deaths around the globe. Cancers account for 13% of all deaths each year, with cancer-related mortality expected to rise to 13.1 million by the year 2030. Although, we now have a large library of chemotherapeutic agents, the problem of non-selectivity remains the biggest drawback, as these substances are toxic not only to cancerous cells, but also to other healthy cells in the body. The limitations with chemotherapy and radiation have led to the discovery and development of novel strategies for safe and effective treatment strategies to manage the menace of cancer. Researchers have long justified and have shed light on the emergence of nanotechnology as a potential area for cancer therapy and diagnostics, whereby, nanomaterials are used primarily as nanocarriers or as delivery agents for anticancer drugs due to their tumor targeting properties. Furthermore, nanocarriers loaded with chemotherapeutic agents also overcome biological barriers such as renal and hepatic clearances, thus improving therapeutic efficacy with lowered morbidity. Theranostics, which is the combination of rationally designed nanomaterials with cancer-targeting moieties, along with protective polymers and imaging agents has become one of the core keywords in cancer research. In this review, we have highlighted the potential of various nanomaterials for their application in cancer therapy and imaging, including their current state and clinical prospects. Theranostics has successfully paved a path to a new era of drug design and development, in which nanomaterials and imaging contribute to a large variety of cancer therapies and provide a promising future in the effective management of various cancers. However, in order to meet the therapeutic needs, theranostic nanomaterials must be designed in such a way, that take into account the pharmacokinetic and pharmacodynamics properties of the drug for the development of effective carcinogenic therapy.
    Matched MeSH terms: Theranostic Nanomedicine
  11. Dheyab MA, Aziz AA, Khaniabadi PM, Jameel MS
    Photodiagnosis Photodyn Ther, 2021 Mar;33:102177.
    PMID: 33429101 DOI: 10.1016/j.pdpdt.2021.102177
    The production of nanomaterials integrating diagnostic and therapeutic roles within one nanoplatform is important for medical applications. Such theranostics nanoplatforms could provide information on imaging, accurate diagnosis and, at the same time, could eradicate cancer cells. Fe3O4@Au core@shell nanoparticles (Fe3O4@AuNPs) have gained broad attention due to their unique innovations in magnetic resonance imaging (MRI) and photothermal therapy (PTT). Seed-mediated growth procedures were used to produce the Fe3O4@AuNPs. In these processes, complicated surface modifications, resulted in unsatisfactory properties. This work used the ability of the sonochemical approach to synthesize highly efficient theranostics agent Fe3O4@AuNPs with a size of approximately 22 nm in 5 min. The inner core of Fe3O4 acts as an MRI agent, whereas the photothermal effect stands accomplished by near-infrared absorption of the gold shell (Au shell), which results in the eradication of cancer cells. We have shown that Fe3O4@AuNPs have great biocompatibility and no major cytotoxicity has been identified. Relaxivity value (r2) of synthesized Fe3O4@Au NPs, measured at 233 mM-1s-1, is significantly higher than those reported previously. The as-synthesized NPs have shown substantial photothermal ablation ability on MCF-7 in vitro under near-infrared laser irradiation. Consequently, Fe3O4@AuNPs synthesized in this study have great potential as an ideal candidate for MR imaging and PTT.
    Matched MeSH terms: Theranostic Nanomedicine
  12. Tan HY, Wong YH, Kasbollah A, Md Shah MN, Abdullah BJJ, Perkins AC, et al.
    Nucl Med Commun, 2022 Apr 01;43(4):410-422.
    PMID: 35045548 DOI: 10.1097/MNM.0000000000001529
    PURPOSE: Hepatic radioembolization is an effective minimally invasive treatment for primary and metastatic liver cancers. Yttrium-90 [90Y]-labelled resin or glass beads are typically used as the radioembolic agent for this treatment; however, these are not readily available in many countries. In this study, novel samarium-153 oxide-loaded polystyrene ([153Sm]Sm2O3-PS) microspheres were developed as a potential alternative to 90Y microspheres for hepatic radioembolization.

    METHODS: The [152Sm]Sm2O3-PS microspheres were synthesized using solid-in-oil-in-water solvent evaporation. The microspheres underwent neutron activation using a 1 MW open-pool research reactor to produce radioactive [153Sm]Sm2O3-PS microspheres via 152Sm(n,γ)153Sm reaction. Physicochemical characterization, gamma spectroscopy and in-vitro radionuclide retention efficiency were carried out to evaluate the properties and stability of the microspheres before and after neutron activation.

    RESULTS: The [153Sm]Sm2O3-PS microspheres achieved specific activity of 5.04 ± 0.52 GBq·g-1 after a 6 h neutron activation. Scanning electron microscopy and particle size analysis showed that the microspheres remained spherical with an average diameter of ~33 μm before and after neutron activation. No long half-life radionuclide and elemental impurities were found in the samples. The radionuclide retention efficiencies of the [153Sm]Sm2O3-PS microspheres at 550 h were 99.64 ± 0.07 and 98.76 ± 1.10% when tested in saline solution and human blood plasma, respectively.

    CONCLUSIONS: A neutron-activated [153Sm]Sm2O3-PS microsphere formulation was successfully developed for potential application as a theranostic agent for liver radioembolization. The microspheres achieved suitable physical properties for radioembolization and demonstrated high radionuclide retention efficiency in saline solution and human blood plasma.

    Matched MeSH terms: Theranostic Nanomedicine
  13. Satija S, Mehta M, Sharma M, Prasher P, Gupta G, Chellappan DK, et al.
    Future Med Chem, 2020 09;12(18):1607-1609.
    PMID: 32589055 DOI: 10.4155/fmc-2020-0149
    Matched MeSH terms: Theranostic Nanomedicine*
  14. Se Thoe E, Fauzi A, Tang YQ, Chamyuang S, Chia AYY
    Life Sci, 2021 Jul 01;276:119129.
    PMID: 33515559 DOI: 10.1016/j.lfs.2021.119129
    Alzheimer's disease (AD) is a multifactorial neurodegenerative disease which is mainly characterized by progressive impairment in cognition, emotion, language and memory in older population. Considering the impact of AD, formulations of pharmaceutical drugs and cholinesterase inhibitors have been widely propagated, receiving endorsement by FDA as a form of AD treatment. However, these medications were gradually discovered to be ineffective in removing the root of AD pathogenesis but merely targeting the symptoms so as to improve a patient's cognitive outcome. Hence, a search for better disease-modifying alternatives is put into motion. Having a clear understanding of the neuroprotective mechanisms and diverse properties undertaken by specific genes, antibodies and nanoparticles is central towards designing novel therapeutic agents. In this review, we provide a brief introduction on the background of Alzheimer's disease, the biology of blood-brain barrier, along with the potentials and drawbacks associated with current therapeutic treatment avenues pertaining to gene therapy, immunotherapy and nanotherapy for better diagnosis and management of Alzheimer's disease.
    Matched MeSH terms: Theranostic Nanomedicine*
  15. Mohanto S, Biswas A, Gholap AD, Wahab S, Bhunia A, Nag S, et al.
    ACS Biomater Sci Eng, 2024 May 13;10(5):2703-2724.
    PMID: 38644798 DOI: 10.1021/acsbiomaterials.3c01969
    The scientific world is increasingly focusing on rare earth metal oxide nanomaterials due to their consequential biological prospects, navigated by breakthroughs in biomedical applications. Terbium belongs to rare earth elements (lanthanide series) and possesses remarkably strong luminescence at lower energy emission and signal transduction properties, ushering in wide applications for diagnostic measurements (i.e., bioimaging, biosensors, fluorescence imaging, etc.) in the biomedical sectors. In addition, the theranostic applications of terbium-based nanoparticles further permit the targeted delivery of drugs to the specific site of the disease. Furthermore, the antimicrobial properties of terbium nanoparticles induced via reactive oxygen species (ROS) cause oxidative damage to the cell membrane and nuclei of living organisms, ion release, and surface charge interaction, thus further creating or exhibiting excellent antioxidant characteristics. Moreover, the recent applications of terbium nanoparticles in tissue engineering, wound healing, anticancer activity, etc., due to angiogenesis, cell proliferation, promotion of growth factors, biocompatibility, cytotoxicity mitigation, and anti-inflammatory potentials, make this nanoparticle anticipate a future epoch of nanomaterials. Terbium nanoparticles stand as a game changer in the realm of biomedical research, proffering a wide array of possibilities, from revolutionary imaging techniques to advanced drug delivery systems. Their unique properties, including luminescence, magnetic characteristics, and biocompatibility, have redefined the boundaries of what can be achieved in biomedicine. This review primarily delves into various mechanisms involved in biomedical applications via terbium-based nanoparticles due to their physicochemical characteristics. This review article further explains the potential biomedical applications of terbium nanoparticles with in-depth significant mechanisms from the individual literature. This review additionally stands as the first instance to furnish a "single-platted" comprehensive acquaintance of terbium nanoparticles in shaping the future of healthcare as well as potential limitations and overcoming strategies that require exploration before being trialed in clinical settings.
    Matched MeSH terms: Theranostic Nanomedicine/methods
  16. Thakur V, Kutty RV
    J Exp Clin Cancer Res, 2019 Oct 28;38(1):430.
    PMID: 31661003 DOI: 10.1186/s13046-019-1443-1
    Triple-negative breast cancer (TNBC) is the most complex and aggressive type of breast cancer encountered world widely in women. Absence of hormonal receptors on breast cancer cells necessitates the chemotherapy as the only treatment regime. High propensity to metastasize and relapse in addition to poor prognosis and survival motivated the oncologist, nano-medical scientist to develop novel and efficient nanotherapies to solve such a big TNBC challenge. Recently, the focus for enhanced availability, targeted cellular uptake with minimal toxicity is achieved by nano-carriers. These smart nano-carriers carrying all the necessary arsenals (drugs, tracking probe, and ligand) designed in such a way that specifically targets the TNBC cells at site. Articulating the targeted delivery system with multifunctional molecules for high specificity, tracking, diagnosis, and treatment emerged as theranostic approach. In this review, in addition to classical treatment modalities, recent advances in nanotheranostics for early and effective diagnostic and treatment is discussed. This review highlighted the recently FDA approved immunotherapy and all the ongoing clinical trials for TNBC, in addition to nanoparticle assisted immunotherapy. Futuristic but realistic advancements in artificial intelligence (AI) and machine learning not only improve early diagnosis but also assist clinicians for their workup in TNBC. The novel concept of Nanoparticles induced endothelial leakiness (NanoEL) as a way of tumor invasion is also discussed in addition to classical EPR effect. This review intends to provide basic insight and understanding of the novel nano-therapeutic modalities in TNBC diagnosis and treatment and to sensitize the readers for continue designing the novel nanomedicine. This is the first time that designing nanoparticles with stoichiometric definable number of antibodies per nanoparticle now represents the next level of precision by design in nanomedicine.
    Matched MeSH terms: Theranostic Nanomedicine/methods*
  17. Abdelnasir S, Anwar A, Kawish M, Anwar A, Shah MR, Siddiqui R, et al.
    AMB Express, 2020 Jul 17;10(1):127.
    PMID: 32681358 DOI: 10.1186/s13568-020-01061-z
    Acanthamoeba castellanii can cause granulomatous amoebic encephalitis and Acanthamoeba keratitis. Currently, no single drug has been developed to effectively treat infections caused by Acanthamoeba. Recent studies have shown that drugs conjugated with nanoparticles exhibit potent in vitro antiamoebic activity against pathogenic free-living amoebae. In this study, we have developed a nano drug delivery system based on iron oxide nanoparticles conjugated with metronidazole which were further loaded with amphotericin B to produce enhanced antiamoebic effects against Acanthamoeba castellanii. The results showed that metronidazole-nanoparticles-amphotericin B (Met-MNPs-Amp) significantly inhibited the viability of these amoebae as compared to the respective controls including drugs and nanoparticles alone. Met-MNPs-Amp exhibited IC50 at 50 μg/mL against both A. castellanii trophozoites and cysts. Furthermore, these nanoparticles did not affect the viability of rat and human cells and showed safe hemolytic activity. Hence, the results obtained in this study have potential utility in drug development against infections caused by Acanthamoeba castellanii. A combination of drugs can lead to successful prognosis against these largely neglected infections. Future studies will determine the value of conjugating molecules with diagnostic and therapeutic potential to provide theranostic approaches against these serious infections.
    Matched MeSH terms: Theranostic Nanomedicine
  18. Rosmazihana Mat Lazim, Raizulnasuha Ab Rashid, Wan Nordiana Rahman, Binh. T.T. Pham, Brian S. Hawkett, Moshi Geso
    MyJurnal
    Therapeutic application of metallic nanoparticles such as gold nanoparticles have been extensively investigated and intriguing finding have been reported. Superparamagnetic iron oxide nanoparticles (SPION) could also potentially have therapeutic properties that can be exploited to enhance radiotherapy outcome. In this study, investigations on the dose enhancement effects inflicted by SPIONs under irradiation with megavoltage photon beam radiotherapy were conducted. T24 human bladder cancer cell lines were pretreated with 1 mMol/L of SPION and irradiated with 6 MV and 10 MV photon beam at different doses.The non-treated cells irradiation was used as a control. Clonogenic assay was performed to determine the cell survival. Linear quadratic (LQ) model are used as fitting curve and does enhancement factors (DEF) were extrapolated from the curves. The cytotoxicity indicated cell growth normally after 72 hours and no long term cytotoxicity effects of SPIONs towards the cells were observed. The dose enhancement effects were observed for both 6 MV and 10 MV photon beam with DEF obtained 1.71 and 2.50, respectively. This reduction of cell colonies growth could be resulted from the interaction that induced free radical and reactive oxygen species (ROS) by megavoltage photon beams. The SPIONs were therefore act as multifunction nanoparticle both in diagnostic agent and radiotherapy as radiation dose enhancer, thus clearly qualified as future theranostic agents.
    Matched MeSH terms: Theranostic Nanomedicine
  19. Wong YH, Tan HY, Kasbollah A, Abdullah BJJ, Yeong CH
    Pharmaceutics, 2019 Nov 12;11(11).
    PMID: 31718079 DOI: 10.3390/pharmaceutics11110596
    INTRODUCTION: Transarterial radioembolization (TARE) has been proven as an effective treatment for unresectable liver tumor. In this study, neutron activated, 153Sm-labeled microspheres were developed as an alternative to 90Y-labeled microspheres for hepatic radioembolization. 153Sm has a theranostic advantage as it emits both therapeutic beta and diagnostic gamma radiations simultaneously, in comparison to the pure beta emitter, 90Y.

    METHODS: Negatively charged acrylic microspheres were labeled with 152Sm ions through electrostatic interactions. In another formulation, the Sm-labeled microsphere was treated with sodium carbonate solution to form the insoluble 152Sm carbonate (152SmC) salt within the porous structures of the microspheres. Both formulations were neutron-activated in a research reactor. Physicochemical characterization, gamma spectrometry, and radiolabel stability tests were carried out to study the performance and stability of the microspheres.

    RESULTS: The Sm- and SmC-labeled microspheres remained spherical and smooth, with a mean size of 35 µm before and after neutron activation. Fourier transform infrared (FTIR) spectroscopy indicated that the functional groups of the microspheres remained unaffected after neutron activation. The 153Sm- and 153SmC-labeled microspheres achieved activity of 2.53 ± 0.08 and 2.40 ± 0.13 GBq·g-1, respectively, immediate after 6 h neutron activation in the neutron flux of 2.0 × 1012 n·cm-2·s-1. Energy-dispersive X-ray (EDX) and gamma spectrometry showed that no elemental and radioactive impurities were present in the microspheres after neutron activation. The retention efficiency of 153Sm in the 153SmC-labeled microspheres was excellent (~99% in distilled water and saline; ~97% in human blood plasma), which was higher than the 153Sm-labeled microspheres (~95% and ~85%, respectively).

    CONCLUSION: 153SmC-labeled microspheres have demonstrated excellent properties for potential application as theranostic agents for hepatic radioembolization.

    Matched MeSH terms: Theranostic Nanomedicine
  20. Sani Usman M, Hussein MZ, Fakurazi S, Masarudin MJ, Ahmad Saad FF
    Nanomaterials (Basel), 2017 Aug 31;7(9).
    PMID: 28858229 DOI: 10.3390/nano7090244
    We have developed gadolinium-based theranostic nanoparticles for co-delivery of drug and magnetic resonance imaging (MRI) contrast agent using Zn/Al-layered double hydroxide as the nanocarrier platform, a naturally occurring phenolic compound, gallic acid (GA) as therapeutic agent, and Gd(NO₃)₃ as diagnostic agent. Gold nanoparticles (AuNPs) were grown on the system to support the contrast for MRI imaging. The nanoparticles were characterized using techniques such as Hi-TEM, XRD, ICP-ES. Kinetic release study of the GA from the nanoparticles showed about 70% of GA was released over a period of 72 h. The in vitro cell viability test for the nanoparticles showed relatively low toxicity to human cell lines (3T3) and improved toxicity on cancerous cell lines (HepG2). A preliminary contrast property test of the nanoparticles, tested on a 3 Tesla MRI machine at various concentrations of GAGZAu and water (as a reference) indicates that the nanoparticles have a promising dual diagnostic and therapeutic features to further develop a better future for clinical remedy for cancer treatment.
    Matched MeSH terms: Theranostic Nanomedicine
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links