Displaying all 6 publications

Abstract:
Sort:
  1. Wong CF, Yuen KH, Peh KK
    Int J Pharm, 1999 Mar 25;180(1):47-57.
    PMID: 10089291
    A method using a texture analyzer equipment and chicken pouch as the biological tissue was investigated for measuring the bioadhesive properties of polymers under simulated buccal conditions. The method was evaluated using two polymers, namely Carbopol 974P and Methocel K4M while the instrument variables studied included the contact force, contact time and speed of withdrawal of the probe from the tissue. The parameters measured were the work of adhesion and peak detachment force. Longer contact time and faster probe speed not only gave better reproducibility of results, but also better sensitivities for both parameters measured. On the other hand, a certain level of contact force was found essential for achieving good bioadhesion, above which there was no further contribution to the bioadhesion process. When the method was applied to determine the bioadhesiveness of several polymers, the values obtained for the work of adhesion and peak detachment force were quite consistent in the ranking of the polymers. The Carbopols were found to have the highest values, followed by gelatin, sodium carboxymethyl celluloses and hydroxypropylmethyl celluloses. On the other hand, Alginic acid, Eudragit RLPO and RSPO, and Chitosan appeared to have low bioadhesive values.
    Matched MeSH terms: Technology, Pharmaceutical/instrumentation*
  2. Walter JK, Jin Z, Jornitz MW, Gorrschalk U
    Methods Biochem Anal, 2011;54:281-317.
    PMID: 21954783
    Matched MeSH terms: Technology, Pharmaceutical/instrumentation
  3. Wong TW, Deepak KG, Taib MN, Anuar NK
    Int J Pharm, 2007 Oct 1;343(1-2):122-30.
    PMID: 17597317
    The capacity of microwave non-destructive testing (NDT) technique to characterize the matrix property of binary polymeric films for use as transdermal drug delivery system was investigated. Hydroxypropylmethylcellulose (HPMC) and polyethylene glycol (PEG) 3000 were the choice of polymeric matrix and plasticizer, respectively with loratadine as the model drug. Both blank and drug loaded HPMC-PEG 3000 films were prepared using the solvent-evaporation method. These films were conditioned at the relative humidity of 25, 50 and 75% prior to physicochemical characterization using the established methods of ultra-violet spectrophotometry, differential scanning calorimetry and Fourier transform infrared spectroscopy methods, as well as, novel microwave NDT technique. Blank films exhibited a greater propensity of polymer-polymer interaction at the O-H domain upon storage at a lower level of relative humidity, whereas drug loaded films exhibited a greater propensity of polymer-polymer, polymer-plasticizer and/or drug-polymer interaction via the O-H, C-H and/or aromatic C=C functional groups when they were stored at a lower or moderate level of relative humidity. The absorption and transmission characteristics of both blank and drug loaded films for microwave varied with the state of polymer-polymer, polymer-plasticizer, and/or drug-polymer interaction of the matrix. The measurements of microwave NDT test at 8 and 12 GHz were sensitive to the polar fraction of film involving functional group such as O-H moiety and the less polar environment of matrix consisting of functional groups such as C-H and aromatic C=C moieties. The state of interaction between polymer, plasticizer and/or drug of a binary polymeric film can be elucidated through its absorption and transmission profiles of microwave.
    Matched MeSH terms: Technology, Pharmaceutical/instrumentation
  4. Wong TW, Musa N
    Int J Pharm, 2012 Jul 1;430(1-2):184-96.
    PMID: 22531845 DOI: 10.1016/j.ijpharm.2012.04.026
    Conventional melt pelletization and granulation processes produce round and dense, and irregularly shaped but porous agglomerates respectively. This study aimed to design centrifugal air-assisted melt agglomeration technology for manufacture of spherical and yet porous "granulets" for ease of downstream manufacturing and enhancing drug release. A bladeless agglomerator, which utilized shear-free air stream to mass the powder mixture of lactose filler, polyethylene glycol binder and poorly water-soluble tolbutamide drug into "granulets", was developed. The inclination angle and number of vane, air-impermeable surface area of air guide, processing temperature, binder content and molecular weight were investigated with reference to "granulet" size, shape, texture and drug release properties. Unlike fluid-bed melt agglomeration with vertical processing air flow, the air stream in the present technology moved centrifugally to roll the processing mass into spherical but porous "granulets" with a drug release propensity higher than physical powder mixture, unprocessed drug and dense pellets prepared using high shear mixer. The fast-release attribute of "granulets" was ascribed to porous matrix formed with a high level of polyethylene glycol as solubilizer. The agglomeration and drug release outcomes of centrifugal air-assisted technology are unmet by the existing high shear and fluid-bed melt agglomeration techniques.
    Matched MeSH terms: Technology, Pharmaceutical/instrumentation
  5. Majid AM, Wong TW
    Int J Pharm, 2013 May 1;448(1):150-8.
    PMID: 23506957 DOI: 10.1016/j.ijpharm.2013.03.008
    The conventional powder flow testers require sample volumes larger than 40g and are met with experimental hiccups due to powder cohesion. This study designed a gas-pressurized dispersive powder flow tester where a high velocity air is used to disaggregate powder (9g) and eliminate its cohesion. The pressurized gas entrained solid particles leaving an orifice where the distance, surface area, width and weight of particle dispersion thereafter are determined as flow index. The flow indices of seven lactose grades with varying size, size distribution, shape, morphology, bulk and tapped densities characteristics were examined. They were compared against Hausner ratio and Carr's index parameters of the same powder mass. Both distance and surface area attributes of particle dispersion had significant negative correlations with Hausner ratio and Carr's index values of lactose. The distance, surface area and ease of particle dispersion varied proportionately with circular equivalent, surface weighted mean and volume weighted mean diameters of lactose, and inversely related to their specific surface area and elongation characteristics. Unlike insensitive Hausner ratio and Carr's index, an increase in elongation property of lactose particles was detectable through reduced powder weight loss from gas-pressurized dispersion as a result of susceptible particle blockage at orifice. The gas-pressurized dispersive tester is a useful alternative flowability measurement device for low volume and cohesive powder.
    Matched MeSH terms: Technology, Pharmaceutical/instrumentation*
  6. Anuar NK, Wui WT, Ghodgaonkar DK, Taib MN
    J Pharm Biomed Anal, 2007 Jan 17;43(2):549-57.
    PMID: 16978823
    The applicability of microwave non-destructive testing (NDT) technique in characterization of matrix property of pharmaceutical films was investigated. Hydroxypropylmethylcellulose and loratadine were selected as model matrix polymer and drug, respectively. Both blank and drug loaded hydroxypropylmethylcellulose films were prepared using the solvent-evaporation method and were conditioned at the relative humidity of 25, 50 and 75% prior to physicochemical characterization using microwave NDT technique as well as ultraviolet spectrophotometry, differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR) techniques. The results indicated that blank hydroxypropylmethylcellulose film exhibited a greater propensity of polymer-polymer interaction at the O-H and C-H domains of the polymer chains upon conditioned at a lower level of relative humidity. In the case of loratadine loaded films, a greater propensity of polymer-polymer and/or drug-polymer interaction via the O-H moiety was mediated in samples conditioned at the lower level of relative humidity, and via the C-H moiety when 50% relative humidity was selected as the condition for sample storage. Apparently, the absorption and transmission characteristics of both blank and drug loaded films for microwave varied with the state of polymer-polymer and/or drug-polymer interaction involving the O-H and C-H moieties. The measurement of microwave NDT test at 8GHz was sensitive to the chemical environment involving O-H moiety while it was greatly governed by the C-H moiety in test conducted at a higher frequency band of microwave. Similar observation was obtained with respect to the profiles of microwave NDT measurements against the state of polymer-polymer and/or drug-polymer interaction of hydroxypropylmethylcellulose films containing chlorpheniramine maleate. The microwave NDT measurement is potentially suitable for use as an apparent indicator of the state of polymer-polymer and drug-polymer interaction of the matrix.
    Matched MeSH terms: Technology, Pharmaceutical/instrumentation
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links