Displaying all 4 publications

Abstract:
Sort:
  1. Goh BL, Morad Z, Cheah PL, Chua CT, Tan SY
    Transplant Proc, 1998 Nov;30(7):3592-3.
    PMID: 9838574
    Matched MeSH terms: Tacrolimus/blood
  2. Qin X, Rui J, Xia Y, Mu H, Song SH, Raja Aziddin RE, et al.
    Ann Lab Med, 2018 Mar;38(2):85-94.
    PMID: 29214751 DOI: 10.3343/alm.2018.38.2.85
    BACKGROUND: The immunosuppressant drugs (ISDs), tacrolimus and cyclosporine, are vital for solid organ transplant patients to prevent rejection. However, toxicity is a concern, and absorption is highly variable across patients; therefore, ISD levels need to be precisely monitored. In the Asia-Pacific (APAC) region, tacrolimus and cyclosporine concentrations are typically measured using immunoassays. The objective of this study was to assess the analytical performance of Roche Elecsystacrolimus and cyclosporinee electrochemiluminescence immunoassays (ECLIAs).

    METHODS: This evaluation was performed in seven centers across China, South Korea, and Malaysia. Imprecision (repeatability and reproducibility), assay accuracy, and lot-to-lot reagent variability were tested. The Elecsys ECLIAs were compared with commercially available immunoassays (Architect, Dimension, and Viva-E systems) using whole blood samples from patients with various transplant types (kidney, liver, heart, and bone marrow).

    RESULTS: Coefficients of variation for repeatability and reproducibility were ≤5.4% and ≤12.4%, respectively, for the tacrolimus ECLIA, and ≤5.1% and ≤7.3%, respectively, for the cyclosporine ECLIA. Method comparisons of the tacrolimus ECLIA with Architect, Dimension, and Viva-E systems yielded slope values of 1.01, 1.14, and 0.897, respectively. The cyclosporine ECLIA showed even closer agreements with the Architect, Dimension, and Viva-E systems (slope values of 1.04, 1.04, and 1.09, respectively). No major differences were observed among the different transplant types.

    CONCLUSIONS: The tacrolimus and cyclosporine ECLIAs demonstrated excellent precision and close agreement with other immunoassays tested. These results show that both assays are suitable for ISD monitoring in an APAC population across a range of different transplant types.

    Matched MeSH terms: Tacrolimus/blood*
  3. Choong CL, Wong HS, Lee FY, Lee CK, Kho JV, Lai YX, et al.
    Transplant Proc, 2018 Oct;50(8):2515-2520.
    PMID: 30316389 DOI: 10.1016/j.transproceed.2018.04.024
    BACKGROUND: Inhibition of calcineurin inhibitor (CNI) metabolism with diltiazem reduces the dose of tacrolimus required to achieve its therapeutic blood concentration in kidney transplant recipients (KTRs). This cost-savings maneuver is practiced in several countries, including Malaysia, but the actual impacts of diltiazem on tacrolimus blood concentration, dose-response relationship, cost-savings, and safety aspects are unknown.

    METHODS: This retrospective study was performed on all KTRs ≥18 years of age at our center from January 1, 2006 to December 31, 2015, who were prescribed diltiazem as tacrolimus-sparing agent. Blood tacrolimus trough level (TacC0) and other relevant clinical data for 70 eligible KTRs were reviewed.

    RESULTS: The dose of 1 mg tacrolimus resulted in a median TacC0 of 0.83 ± 0.52 ng/mL. With the introduction of a 90-mg/d dose diltiazem, there was a significant TacC0 increase to 1.39 ± 1.31 ng/mL/mg tacrolimus (P < .01). A further 90-mg increase in diltiazem to 180 mg/d resulted in a further increase of TacC0 to 1.66 ± 2.58 ng/mL/mg tacrolimus (P = .01). After this, despite a progressive increment of every 90-mg/d dose diltiazem to 270 mg/d and 360 mg/d, there was no further increment in TacC0 (1.44 ± 1.15 ng/mL/mg tacrolimus and 1.24 ± 0.94 ng/mL/mg tacrolimus, respectively [P < .01]). Addition of 180 mg/d diltiazem reduced the required tacrolimus dose to 4 mg/d, resulting in a cost-savings of USD 2045.92 per year (per patient) at our center. Adverse effects reported within 3 months of diltiazem introduction were bradycardia (1.4%) and postural hypotension (1.4%), which resolved after diltiazem dose reduction.

    CONCLUSION: Coadministration of tacrolimus and diltiazem in KTRs appeared to be safe and resulted in a TacC0 increment until reaching a 180-mg/d total diltiazem dose, at which point it began to decrease. This approach will result in a marked savings in immunosuppression costs among KTRs in Malaysia.

    Matched MeSH terms: Tacrolimus/blood
  4. Abu Bakar K, Mohamad NA, Hodi Z, McCulloch T, Williams A, Christian M, et al.
    Pediatr Nephrol, 2019 12;34(12):2557-2562.
    PMID: 31520127 DOI: 10.1007/s00467-019-04346-z
    BACKGROUND: Late acute cellular rejection (LACR) is associated with poorer graft outcomes and non-adherence. Non-adherence to tacrolimus can be indirectly assessed by the intra-patient variability (IPV) of tacrolimus trough levels. The threshold of IPV associated with rejection is not known.

    METHODS: We conducted a case-control study comparing 25 patients with biopsy-proven LACR against 25 stable controls matched for age group, primary diagnosis and time post-transplant. IPV was calculated using coefficient of variance (CV) and mean absolute deviation (MAD) using tacrolimus levels in the preceding 12 months. We also assessed the percentage time for tacrolimus levels

    Matched MeSH terms: Tacrolimus/blood
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links