Displaying all 5 publications

Abstract:
Sort:
  1. Siwi K, Tejosukmono A, Anggorowati N, Arfian N, Yunus J
    Med J Malaysia, 2024 Aug;79(Suppl 4):23-30.
    PMID: 39215411
    INTRODUCTION: Muscle health in diabetes mellitus (DM) is often neglected, which leads to muscle wasting. Increased reactive oxygen species in DM could decrease antioxidant enzymes such as superoxide dismutase-1 (SOD-1) and -2 (SOD-2) and inhibit calcineurin (CN) and PGC-1α signalling pathways. Chlorogenic acid (CGA) is known as a potent antioxidant and activators of CN and PGC-1α. This study aimed to determine the effect of CGA on mRNA expressions of SOD-1, SOD-2, CN and PGC-1α in inhibiting the progression of DM to muscle wasting.

    MATERIALS AND METHODS: This study was conducted at Department of Anatomy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada starting on July 20th, 2020. A total of 24 male Wistar rats were randomly divided into six groups (four rats per group), i.e., control, DM 1.5 months (DM1.5), and DM 2 months (DM2); and DM groups treated with CGA in three different doses, namely CGA1 (12.5 mg/kg BW), CGA2 (25 mg/kg BW), and CGA3 (50 mg/kg BW). Control group was only injected with normal saline, while diabetic model was induced by intraperitoneal injection of streptozotocin. Blood glucose levels were measured twice (one week after diabetic induction and before termination). The soleus muscle tissue was harvested to analyse the mRNA expressions of SOD-1, SOD- 2, CN and PGC-1α using RT-PCR. In addition, the tissue samples were stained with immunohistochemistry for CN and haematoxylin-eosin (HE) for morphologic analysis under light microscopy.

    RESULTS: The mRNA expressions of SOD-1 and SOD-2 in the CGA1 group were relatively higher compared to the DM2 groups. The mRNA expression of CN in the CGA1 group was significantly higher compared to the DM2 group (p = 0.008). The mRNA expression of PGC-1α in the CGA1 group was significantly higher compared to the DM2 group (p = 0.025). Immunohistochemical staining showed that CNimmunopositive expression in the CGA1 group was more evident compared to the other groups. Haematoxylin-eosin staining showed that muscle tissue morphology in the CGA1 group was similar to that in the control group.

    CONCLUSION: Chlorogenic acid at a dose of 12.5 mg/kg BW shows lower blood glucose level, good skeletal muscle tissue morphology and higher mRNA expressions of SOD-1, SOD-2, CN and PGC-1α compared to the DM groups.

    Matched MeSH terms: Superoxide Dismutase-1/metabolism
  2. Hemagirri M, Chen Y, Gopinath SCB, Adnan M, Patel M, Sasidharan S
    Biogerontology, 2024 Aug;25(4):705-737.
    PMID: 38619670 DOI: 10.1007/s10522-024-10104-y
    Polyalthia longifolia is well-known for its abundance of polyphenol content and traditional medicinal uses. Previous research has demonstrated that the methanolic extract of P. longifolia leaves (PLME, 1 mg/mL) possesses anti-aging properties in Saccharomyces cerevisiae BY611 yeast cells. Building on these findings, this study delves deeper into the potential antiaging mechanism of PLME, by analyzing the transcriptional responses of BY611 cells treated with PLME using RNA-sequencing (RNA-seq) technology. The RNA-seq analysis results identified 1691 significantly (padj 
    Matched MeSH terms: Superoxide Dismutase-1/metabolism
  3. Hosseinzadeh A, Jafari D, Kamarul T, Bagheri A, Sharifi AM
    J Cell Biochem, 2017 Jul;118(7):1879-1888.
    PMID: 28169456 DOI: 10.1002/jcb.25907
    The protective effects and mechanisms of DADS on IL-1β-mediated oxidative stress and mitochondrial apoptosis were investigated in C28I2 human chondrocytes. The effect of various concentrations of DADS (1, 5 10, 25, 50, and 100 μM) on C28I2 cell viability was evaluated in different times (2, 4, 8, 16, and 24 h) to obtain the non-cytotoxic concentrations of drug by MTT-assay. The protective effect of non-toxic concentrations of DADS on experimentally induced oxidative stress and apoptosis by IL-1β in C28I2 was evaluated. The effects of DADS on IL-1β-induced intracellular ROS production and lipid peroxidation were detected and the proteins expression of Nrf2, Bax, Bcl-2, caspase-3, total and phosphorylated JNK, and P38 MAPKs were analyzed by Western blotting. The mRNA expression of detoxifying phase II/antioxidant enzymes including heme oxygenase-1, NAD(P)H quinine oxidoreductase, glutathione S-transferase-P1, catalase, superoxide dismutase-1, glutathione peroxidase-1, -3, -4 were evaluated by reverse transcription-polymerase chain reaction. DADS in 1, 5, 10, and 25 μM concentrations had no cytotoxic effect after 24 h. Pretreatment with DADS remarkably increased Nrf2 nuclear translocation as well as the genes expression of detoxifying phase II/antioxidant enzymes and reduced IL-1β-induced elevation of ROS, lipid peroxidation, Bax/Bcl-2 ratio, caspase-3 activation, and JNK and P38 phosphorylation. DADS could considerably reduce IL-1β-induced oxidative stress and consequent mitochondrial apoptosis, as the major mechanisms of chondrocyte cell death in an experimental model of osteoarthritis. It may be considered as natural product in protecting OA-induced cartilage damage in clinical setting. J. Cell. Biochem. 118: 1879-1888, 2017. © 2017 Wiley Periodicals, Inc.
    Matched MeSH terms: Superoxide Dismutase-1/metabolism
  4. Jaafar F, Durani LW, Makpol S
    Mol Biol Rep, 2020 Jan;47(1):369-379.
    PMID: 31642042 DOI: 10.1007/s11033-019-05140-8
    Human diploid fibroblasts (HDFs) cultured in vitro have limited capacity to proliferate after population doubling is repeated several times, and they enter into a state known as replicative senescence or cellular senescence. This study aimed to investigate the effect of Chlorella vulgaris on the replicative senescence of HDFs by determining the expression of senescence-associated genes. Young and senescent HDFs were divided into untreated control and C. vulgaris-treated groups. A senescence-associated gene transcription analysis was carried out with qRT-PCR. Treatment of young HDFs with C. vulgaris reduced the expression of SOD1, CAT and CCS (p 1 signalling, DNA damage-associated signalling, cell differentiation and cell proliferation pathways was modulated by C. vulgaris during replicative senescence of human diploid fibroblasts.
    Matched MeSH terms: Superoxide Dismutase-1/metabolism
  5. Seifaddinipour M, Farghadani R, Namvar F, Bin Mohamad J, Muhamad NA
    Molecules, 2020 Apr 13;25(8).
    PMID: 32295069 DOI: 10.3390/molecules25081776
    Pistacia (Pistacia vera) hulls (PV) is a health product that has been determined to contain bioactive phytochemicals which have fundamental importance for biomedical use. In this study, PV ethyl acetate extraction (PV-EA) fractions were evaluated with the use of an MTT assay to find the most cytotoxic fraction, which was found to be F13b1/PV-EA. After that, HPTLC was used for identify the most active compounds. The antioxidant activity was analyzed with DPPH and ABTS tests. Apoptosis induction in MCF-7 cells by F13b1/PV-EA was validated via flow cytometry analysis and a distinctive nuclear staining method. The representation of genes like Caspase 3, Caspase 8, Bax, Bcl-2, CAT and SOD was assessed via a reverse transcription (RT_PCR) method. Inhabitation of Tubo breast cancer cell development was examined in the BALB-neuT mouse with histopathology observations. The most abundant active components available in our extract were gallic acid and the flavonoid quercetin. The F13b1/PV-EA has antiradical activity evidence by its inhibition of ABTS and DPPH free radicals. F13b1/PV-EA displayed against MCF-7 a suppressive effect with an IC50 value of 15.2 ± 1.35 µg/mL. Also, the expression of CAT, SOD, Caspase 3, Caspase 8 and Bax increased and the expression of Bcl-2 decreased. F13b1/PV-EA dose-dependently inhibited tumor development in cancer-induced mice. Thus, this finding introduces F13b1/PV-EA as an effectual apoptosis and antitumor active agent against breast cancer.
    Matched MeSH terms: Superoxide Dismutase-1/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links