Displaying all 3 publications

Abstract:
Sort:
  1. Lee CY
    Clin Exp Pharmacol Physiol, 2013 Jun;40(6):385-91.
    PMID: 23586523 DOI: 10.1111/1440-1681.12096
    Psychosocial stress is reported to be one of the main causes of obesity. Based on observations in studies that relate stress and gut inflammation to obesity, the present study hypothesized that chronic stress, via inflammation, alters the expression of nutrient transporters and contributes to the development of metabolic syndrome. Rats were exposed to restraint stress for 4 h/day for 5 days/week for eight consecutive weeks. Different segments of rat intestine were then collected and analysed for signs of pathophysiological changes and the expression of Niemann-Pick C1-like-1 (NPC1L1), sodium-dependent glucose transporter-1 (SLC5A1, previously known as SGLT1) and facilitative glucose transporter-2 (SLC2A2, previously known as GLUT2). In a separate experiment, the total anti-oxidant activity (TAA)-time profile of control isolated intestinal segments was measured. Stress decreased the expression of NPC1L1 in the ileum and upregulated SLC5A1 in both the jejunum and ileum and SLC2A2 in the duodenum. Inflammation and morphological changes were observed in the proximal region of the intestine of stressed animals. Compared with jejunal and ileal segments, the rate of increase in TAA was higher in the duodenum, indicating that the segment contained less anti-oxidants; anti-oxidants may function to protect the tissues. In conclusion, stress alters the expression of hexose and lipid transporters in the gut. The site-specific increase in the expression of SLC5A1 and SLC2A2 may be correlated with pathological changes in the intestine. The ileum may be protected, in part, by gut anti-oxidants. Collectively, the data suggest that apart from causing inflammation, chronic stress may promote sugar uptake and contribute to hyperglycaemia.
    Matched MeSH terms: Stress, Psychological/pathology
  2. Lee MT, Chiu YT, Chiu YC, Hor CC, Lee HJ, Guerrini R, et al.
    J Biomed Sci, 2020 Jan 09;27(1):7.
    PMID: 31915019 DOI: 10.1186/s12929-019-0590-1
    BACKGROUND: Stress-induced analgesia (SIA) is an evolutionarily conserved phenomenon during stress. Neuropeptide S (NPS), orexins, substance P, glutamate and endocannabinoids are known to be involved in stress and/or SIA, however their causal links remain unclear. Here, we reveal an unprecedented sequential cascade involving these mediators in the lateral hypothalamus (LH) and ventrolateral periaqueductal gray (vlPAG) using a restraint stress-induced SIA model.

    METHODS: Male C57BL/6 mice of 8-12 week-old were subjected to intra-cerebroventricular (i.c.v.) and/or intra-vlPAG (i.pag.) microinjection of NPS, orexin-A or substance P alone or in combination with selective antagonists of NPS receptors (NPSRs), OX1 receptors (OX1Rs), NK1 receptors (NK1Rs), mGlu5 receptors (mGlu5Rs) and CB1 receptors (CB1Rs), respectively. Antinociceptive effects of these mediators were evaluated via the hot-plate test. SIA in mice was induced by a 30-min restraint stress. NPS levels in the LH and substance P levels in vlPAG homogenates were compared in restrained and unrestrained mice.

    RESULTS: NPS (i.c.v., but not i.pag.) induced antinociception. This effect was prevented by i.c.v. blockade of NPSRs. Substance P (i.pag.) and orexin-A (i.pag.) also induced antinociception. Substance P (i.pag.)-induced antinociception was prevented by i.pag. Blockade of NK1Rs, mGlu5Rs or CB1Rs. Orexin-A (i.pag.)-induced antinociception has been shown previously to be prevented by i.pag. blockade of OX1Rs or CB1Rs, and here was prevented by NK1R or mGlu5R antagonist (i.pag.). NPS (i.c.v.)-induced antinociception was prevented by i.pag. blockade of OX1Rs, NK1Rs, mGlu5Rs or CB1Rs. SIA has been previously shown to be prevented by i.pag. blockade of OX1Rs or CB1Rs. Here, we found that SIA was also prevented by i.c.v. blockade of NPSRs or i.pag. blockade of NK1Rs or mGlu5Rs. Restrained mice had higher levels of NPS in the LH and substance P in the vlPAG than unrestrained mice.

    CONCLUSIONS: These results suggest that, during stress, NPS is released and activates LH orexin neurons via NPSRs, releasing orexins in the vlPAG. Orexins then activate OX1Rs on substance P-containing neurons in the vlPAG to release substance P that subsequently. Activates NK1Rs on glutamatergic neurons to release glutamate. Glutamate then activates perisynaptic mGlu5Rs to initiate the endocannabinoid retrograde inhibition of GABAergic transmission in the vlPAG, leading to analgesia.

    Matched MeSH terms: Stress, Psychological/pathology
  3. Kapitonova MY, Kuznetsov SL, Khlebnikov VV, Zagrebin VL, Morozova ZCh, Degtyar YV
    Neurosci. Behav. Physiol., 2010 Jan;40(1):97-102.
    PMID: 20012496 DOI: 10.1007/s11055-009-9217-4
    Quantitative immunohistochemical methods were used to assess activation of the hypothalamo-hypophyseal-adrenocortical system at the level of its central component - the adenohypophysis - in the growing body during chronic exposure to psychoemotional stressors of different strengths. Sprague-Dawley rats aged 30 days were subjected to "mild" or "severe" immobilization stress for 5 h per day for seven days. Animals were decapitated at the end of the last stress session and the endocrine glands (hypophysis, adrenals) were harvested, weighed, and embedded in paraffin; sections were stained with hematoxylin and eosin, and also immunohistochemically using monoclonal antibodies to adrenocorticotropic hormone (ACTH) and proliferating cell nuclear antigen (PCNA) following by automated image analysis. These studies showed that stress-associated hyperplasia of corticotropocytes in rats of pubertal age was due more to the differentiation of existing immature precursor cells than to cell proliferation.
    Matched MeSH terms: Stress, Psychological/pathology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links