Displaying publications 1 - 20 of 21 in total

Abstract:
Sort:
  1. Jahan N, Abd Manan F, Mansoor A, Zaidi MA, Shahwani MN, Javed MA
    ScientificWorldJournal, 2018;2018:8180174.
    PMID: 30356418 DOI: 10.1155/2018/8180174
    Rice production is decreasing by abiotic stresses like heavy metals. In such circumstances, producing food for growing human population is a challenge for plant breeders. Excess of Al3+ in soil has become threat for high yield of rice. Improvement of crop is one of potential solution for high production. The aim of this study was to develop the new method for optimization of Al3+ toxicity tolerance in indica rice at germination stag using two-way ANOVA and Duncan's multiple-range test (DMRT). Seeds of two indica rice cultivars (Pokkali and Pak Basmati) were exposed in different concentrations (control, 5 mM, 15 mM, and 20 mM) of Al3+ toxicity at pH 4 ±0.2 for two weeks. Germination traits such as final germination percentage (FG%), germination energy (GE), germination speed (GS), germination index (GI), mean time of germination (MGT), germination value (GV), germination velocity (GVe), peak value of germination (GPV), and germination capacity (GC) and growth traits such as root length (RL), shoot length (SL), total dry biomass (TDB), and germination vigour index (GVI) were measured. To obtain the maximum number of significance (≤ 0.01%) parameters in each concentration of Al3+ toxicity with control, two-way ANOVA was established and comparison of mean was done using DMRT. The results showed that 5 mM, 10 mM, and 15 mM have less significant effects on the above-mentioned parameters. However, 20 mM concentration of Al3+ produced significant effects (≤ 0.01%). Therefore, 20 mM of Al3+ is considered optimized limit for indica cultivars (Pokkali and Pak Basmati).
    Matched MeSH terms: Stress, Physiological/drug effects*
  2. Pamidi N, Nayak S
    Biomed J, 2014 Jul-Aug;37(4):225-31.
    PMID: 25116719 DOI: 10.4103/2319-4170.125651
    BACKGROUND: Environmental enrichment (EE) exposure is known to influence the structural changes in the neuronal network of hippocampus. In the present study, we evaluated the effects of EE exposure on the streptozotocin (STZ)-induced diabetic and stressed rat hippocampus.
    METHODS: Male albino rats of Wistar strain (4-5 weeks old) were grouped into normal control (NC), vehicle control (VC), diabetes (DI), diabetes + stress (DI + S), diabetes + EE (DI + E), and diabetes + stress + EE (DI + S + E) groups (n = 8 in each group). Rats were exposed to stress and EE after inducing diabetes with STZ (40 mg/kg). Rats were sacrificed on Day 30 and brain sections were processed for cresyl violet staining to quantify the number of surviving neurons in the CA1, CA3, and dentate hilus (DH) regions of hippocampus.
    RESULTS: A significant (p < 0.001) decrease in the number of survived neurons was noticed in DI (CA1, 34.06 ± 3.2; CA3, 36.1 ± 3.62; DH, 9.83 ± 2.02) as well as DI + S (CA1, 14.03 ± 3.12; CA3, 20.27 ± 4.09; DH, 6.4 ± 1.21) group rats compared to NC rats (CA1, 53.64 ± 2.96; CA3, 62.1 ± 3.34; DH, 21.11 ± 1.03). A significant (p < 0.001) increase in the number of survived neurons was observed in DI + E (CA1, 42.3 ± 3.66; CA3, 46.73 ± 4.74; DH, 17.03 ± 2.19) and DI + S + E (CA1, 29.69 ± 4.47; CA3, 36.73 ± 3.89; DH, 12.23 ± 2.36) group rats compared to DI and DI + S groups, respectively.
    CONCLUSIONS: EE exposure significantly reduced the amount of neuronal damage caused by complications of diabetes and stress to the neurons of hippocampus.
    Matched MeSH terms: Stress, Physiological/drug effects
  3. Goh LK, Purama RK, Sudesh K
    Appl Biochem Biotechnol, 2014 Feb;172(3):1585-98.
    PMID: 24233544 DOI: 10.1007/s12010-013-0634-z
    Poly(3-hydroxybutyrate) [P(3HB)], a polymer belonging to the polyhydroxyalkanoate (PHA) family, is accumulated by numerous bacteria as carbon and energy storage material. The mobilization of accumulated P(3HB) is associated with increased stress and starvation tolerance. However, the potential function of accumulated copolymer such as poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] remained unknown. In this study, Delftia acidovorans DS 17 was used to evaluate the contributions of P(3HB) and P(3HB-co-3HV) granules during simulated exogenous carbon deprivation on cell survival by transferring cells with PHAs to carbon-free mineral salt medium supplemented with 1% (w/v) nitrogen source. By mobilizing the intracellular P(3HB) and P(3HB-co-3HV) at 11 and 40 mol% 3HV compositions, the cells survived starvation. Surprisingly, D. acidovorans containing P(3HB-co-94 mol% 3HV) also survived although the mobilization was not as effective. Similarly, recombinant Escherichia coli pGEM-T::phbCAB(Cn) (harboring the PHA biosynthesis genes of Cupriavidus necator) containing P(3HB) granules had a higher viable cell counts compared to those without P(3HB) granules but without any P(3HB) mobilization when exposed to oxidative stress by photoactivated titanium dioxide. This study provided strong evidence that enhancement of stress tolerance in PHA producers can be achieved without mobilization of the previously accumulated granules. Instead, PHA biosynthesis may improve bacterial survival via multiple mechanisms.
    Matched MeSH terms: Stress, Physiological/drug effects
  4. Talei D, Valdiani A, Maziah M, Sagineedu SR, Saad MS
    Biomed Res Int, 2013;2013:319047.
    PMID: 24371819 DOI: 10.1155/2013/319047
    Salinity causes the adverse effects in all physiological processes of plants. The present study aimed to investigate the potential of salt stress to enhance the accumulation of the anticancer phytochemicals in Andrographis paniculata accessions. For this purpose, 70-day-old plants were grown in different salinity levels (0.18, 4, 8, 12, and 16 dSm(-1)) on sand medium. After inducing a period of 30-day salinity stress and before flowering, all plants were harvested and the data on morphological traits, proline content and the three anticancer phytochemicals, including andrographolide (AG), neoandrographolide (NAG), and 14-deoxy-11,12-didehydroandrographolide (DDAG), were measured. The results indicated that salinity had a significant effect on the aforementioned three anticancer phytochemicals. In addition, the salt tolerance index (STI) was significantly decreased, while, except for DDAG, the content of proline, the AG, and NAG was significantly increased (P ≤ 0.01). Furthermore, it was revealed that significant differences among accessions could happen based on the total dry weight, STI, AG, and NAG. Finally, we noticed that the salinity at 12 dSm(-1) led to the maximum increase in the quantities of AG, NAG, and DDAG. In other words, under salinity stress, the tolerant accessions were capable of accumulating the higher amounts of proline, AG, and NAG than the sensitive accessions.
    Matched MeSH terms: Stress, Physiological/drug effects*
  5. Fallah M, Hadi H, Amirnia R, Hassanzadeh-Ghorttapeh A, Zuan ATK, Sayyed RZ
    PLoS One, 2021;16(12):e0261225.
    PMID: 34941919 DOI: 10.1371/journal.pone.0261225
    This study's primary purpose was to investigate the possible amelioration of limited irrigation conditions by mycorrhiza (AMF), vermicompost, and green manure for lingrain plants. This experiment was accomplished as a factorial based on the completely randomized design with three replications. The first factor was green manure (without green manure and with Trifolium pratense as green manure); the second factor consisted of Rhizophagus irregularis mycorrhiza, vermicompost, a combination of mycorrhiza and vermicompost and none of them, and also the third factor was irrigation regime (full irrigation and late-season water limitation). Green manure, vermicompost, and mycorrhiza single-use enhanced the plant's underwater limitation conditions compared to the control. However, vermicompost and green manure or mycorrhiza developed a positive synergistic effect on most traits. Combining green manure with the dual fertilizer (mycorrhiza + vermicompost) resulted in the vermicompost and mycorrhiza synergistic effects, especially under limited irrigation. Consequently, the combination of green manure, mycorrhiza, and vermicompost experienced the highest amount of leaf relative water content, root colonization, leaf nitrogen, chlorophyll a, chlorophyll b, carotenoids, antioxidant enzymes activity, grain yield, and oil yield, which would lead to more resistance of plants to limited irrigation conditions.
    Matched MeSH terms: Stress, Physiological/drug effects
  6. Lim JJ, Ngah WZ, Mouly V, Abdul Karim N
    Oxid Med Cell Longev, 2013;2013:978101.
    PMID: 24349615 DOI: 10.1155/2013/978101
    Skeletal muscle satellite cells are heavily involved in the regeneration of skeletal muscle in response to the aging-related deterioration of the skeletal muscle mass, strength, and regenerative capacity, termed as sarcopenia. This study focused on the effect of tocotrienol rich fraction (TRF) on regenerative capacity of myoblasts in stress-induced premature senescence (SIPS). The myoblasts was grouped as young control, SIPS-induced, TRF control, TRF pretreatment, and TRF posttreatment. Optimum dose of TRF, morphological observation, activity of senescence-associated β-galactosidase (SA-β-galactosidase), and cell proliferation were determined. 50 μg/mL TRF treatment exhibited the highest cell proliferation capacity. SIPS-induced myoblasts exhibit large flattened cells and prominent intermediate filaments (senescent-like morphology). The activity of SA-β-galactosidase was significantly increased, but the proliferation capacity was significantly reduced as compared to young control. The activity of SA-β-galactosidase was significantly reduced and cell proliferation was significantly increased in the posttreatment group whereas there was no significant difference in SA-β-galactosidase activity and proliferation capacity of pretreatment group as compared to SIPS-induced myoblasts. Based on the data, we hypothesized that TRF may reverse the myoblasts aging through replenishing the regenerative capacity of the cells. However, further investigation on the mechanism of TRF in reversing the myoblast aging is needed.
    Matched MeSH terms: Stress, Physiological/drug effects
  7. Ngadni MA, Akhtar MT, Ismail IS, Norazhar AI, Lee SY, Maulidiani M, et al.
    Molecules, 2021 Jul 07;26(14).
    PMID: 34299411 DOI: 10.3390/molecules26144137
    Clitorea ternatea has been used in Ayurvedic medicine as a brain stimulant to treat mental illnesses and mental functional disorders. In this study, the metabolite profiles of crude C. ternatea root extract (CTRE), ethyl acetate (EA), and 50% aqueous methanol (50% MeOH) fractions were investigated using ultrahigh-performance liquid chromatography-diode array detector-tandem mass spectrometry (UHPLC-DAD-MS/MS), while their effect on the stress-like behavior of zebrafish, pharmacologically induced with reserpine, was investigated. A total of 32 compounds were putatively identified, among which, a series of norneolignans, clitorienolactones, and various flavonoids (flavone, flavonol, isoflavone, and isoflavanone) was found to comprise the major constituents, particularly in the EA and 50% MeOH fractions. The clitorienolactones, presently unique to the species, were present in both the free and glycosylated forms in the roots. Both the EA and 50% MeOH fractions displayed moderate effects on the stress-induced zebrafish model, significantly decreasing freezing duration and elevating the total distance travelled and average velocity, 72 h post-treatment. The results of the present study provide further evidence that the basis for the use of C. ternatea roots in traditional medicine to alleviate brain-related conditions, such as stress and depression, is attributable to the presence of clitorienolactones and the isoflavonoidal constituents.
    Matched MeSH terms: Stress, Physiological/drug effects*
  8. Mohamat-Yusuff F, Sarah-Nabila AG, Zulkifli SZ, Azmai MNA, Ibrahim WNW, Yusof S, et al.
    Mar Pollut Bull, 2018 Feb;127:150-153.
    PMID: 29475647 DOI: 10.1016/j.marpolbul.2017.11.046
    This study was conducted to investigate the median lethal concentration (LC50) of copper pyrithione (CuPT) at 96-hr exposure on adult Javanese medaka (Oryzias javanicus) in revealing toxicological effects of CuPT contamination in the tropical area. Wild stock fishes were acclimatized for 14-days prior analysis. Triplicate of test tanks for seven test concentrations were placed with ten fishes each, this includes two control tanks. The behaviour of the tested fishes was manually observed through a camera. The LC50 of CuPT at 96-h was found to be 16.58mg/L. Tested fishes swam slowly in vertical movement and swam fast towards food during feeding time as the sign of stress behaviour. Meanwhile, fishes in the two control groups swam actively in a horizontal manner and no excitement during feeding time. No mortality in control groups. Results indicate CuPT to be toxic to Javanese medaka at low concentration and caused behavioural stress.
    Matched MeSH terms: Stress, Physiological/drug effects*
  9. Kumar RS, Narayanan SN, Nayak S
    Clinics (Sao Paulo), 2009;64(12):1211-7.
    PMID: 20037710 DOI: 10.1590/S1807-59322009001200012
    Chronic stress has been shown to cause oxidative damage in the central nervous system. Although stress-induced impairments in learning and memory have been studied extensively, very few studies have investigated possible ways to prevent their ill effects. The present work was designed to study the protective effects of ascorbic acid in memory loss induced by chronic restraint stress.
    Matched MeSH terms: Stress, Physiological/drug effects*
  10. Makpol S, Jam FA, Khor SC, Ismail Z, Mohd Yusof YA, Ngah WZ
    Oxid Med Cell Longev, 2013;2013:298574.
    PMID: 24396567 DOI: 10.1155/2013/298574
    Biodynes, tocotrienol-rich fraction (TRF), and tocopherol have shown antiaging properties. However, the combined effects of these compounds on skin aging are yet to be investigated. This study aimed to elucidate the skin aging effects of biodynes, TRF, and tocopherol on stress-induced premature senescence (SIPS) model of human diploid fibroblasts (HDFs) by determining the expression of collagen and MMPs at gene and protein levels. Primary HDFs were treated with biodynes, TRF, and tocopherol prior to hydrogen peroxide (H2O2) exposure. The expression of COL1A1, COL3A1, MMP1, MMP2, MMP3, and MMP9 genes was determined by qRT-PCR. Type I and type III procollagen proteins were measured by Western blotting while the activities of MMPs were quantified by fluorometric Sensolyte MMP Kit. Our results showed that biodynes, TRF, and tocopherol upregulated collagen genes and downregulated MMP genes (P < 0.05). Type I procollagen and type III procollagen protein levels were significantly increased in response to biodynes, TRF, and tocopherol treatment (P < 0.05) with reduction in MMP-1, MMP-2, MMP-3, and MMP-9 activities (P < 0.05). These findings indicated that biodynes, TRF, and tocopherol effectively enhanced collagen synthesis and inhibited collagen degradation and therefore may protect the skin from aging.
    Matched MeSH terms: Stress, Physiological/drug effects*
  11. Aan GJ, Hairi HA, Makpol S, Rahman MA, Karsani SA
    Electrophoresis, 2013 Aug;34(15):2209-17.
    PMID: 23712505 DOI: 10.1002/elps.201300086
    Replicative senescence and stress-induced premature senescence (SIPS) cells are known to share certain traits. However, whether these cells are different at the protein level is unclear. Thus, this study has utilized proteomics to identify differences in the proteomes of replicative senescence and SIPS cells compared to normal cells. Replicative senescence was induced by serial passage of normal cells in culture. SIPS was established by exposure to H2 O2 at a subcytotoxic concentration of 20 μM for two weeks. Following 2DE, protein profiles were compared and protein spots that changed in abundance were identified by MALDI-TOF MS. Quantitative real-time RT-PCR was then performed to evaluate the transcript expression of selected altered proteins. A total of 24 and 10 proteins were found to have changed in abundance in replicative senescence and SIPS cells, respectively, when compared to young cells. Quantitative RT-PCR revealed that nine genes showed the same direction of change as observed in the proteomics analysis. Very little overlap was observed between proteins that changed in replicative senescence and SIPS cells, suggesting that although both SIPS and replicative senescence cells share hallmarks of cellular senescence, they were different in terms of proteins that changed in abundance.
    Matched MeSH terms: Stress, Physiological/drug effects
  12. Hasheimi SR, Zulkifli I, Somchit MN, Zunita Z, Loh TC, Soleimani AF, et al.
    J Anim Physiol Anim Nutr (Berl), 2013 Aug;97(4):632-8.
    PMID: 22533311 DOI: 10.1111/j.1439-0396.2012.01302.x
    The present study was conducted to assess the effects of dietary supplementation of Zingiber officinale and Zingiber zerumbet and to heat-stressed broiler chickens on heat shock protein (HSP) 70 density, plasma corticosterone concentration (CORT), heterophil to lymphocyte ratio (HLR) and body temperature. Beginning from day 28, chicks were divided into five dietary groups: (i) basal diet (control), (ii) basal diet +1%Z. zerumbet powder (ZZ1%), (iii) basal diet +2%Z. zerumbet powder (ZZ2%), (iv) basal diet +1%Z. officinale powder (ZO1%) and (v) basal diet +2%Z. officinale powder (ZO2%). From day 35-42, heat stress was induced by exposing birds to 38±1°C and 80% RH for 2 h/day. Irrespective of diet, heat challenge elevated HSP70 expression, CORT and HLR on day 42. On day 42, following heat challenge, the ZZ1% birds showed lower body temperatures than those of control, ZO1% and ZO2%. Neither CORT nor HLR was significantly affected by diet. The ZO2% and ZZ2% diets enhanced HSP70 expression when compared to the control groups. We concluded that dietary supplementation of Z. officinale and Z. zerumbet powder may induce HSP70 reaction in broiler chickens exposed to heat stress.
    Matched MeSH terms: Stress, Physiological/drug effects*
  13. Lee WS, Gudimella R, Wong GR, Tammi MT, Khalid N, Harikrishna JA
    PLoS One, 2015;10(5):e0127526.
    PMID: 25993649 DOI: 10.1371/journal.pone.0127526
    Physiological responses to stress are controlled by expression of a large number of genes, many of which are regulated by microRNAs. Since most banana cultivars are salt-sensitive, improved understanding of genetic regulation of salt induced stress responses in banana can support future crop management and improvement in the face of increasing soil salinity related to irrigation and climate change. In this study we focused on determining miRNA and their targets that respond to NaCl exposure and used transcriptome sequencing of RNA and small RNA from control and NaCl-treated banana roots to assemble a cultivar-specific reference transcriptome and identify orthologous and Musa-specific miRNA responding to salinity. We observed that, banana roots responded to salinity stress with changes in expression for a large number of genes (9.5% of 31,390 expressed unigenes) and reduction in levels of many miRNA, including several novel miRNA and banana-specific miRNA-target pairs. Banana roots expressed a unique set of orthologous and Musa-specific miRNAs of which 59 respond to salt stress in a dose-dependent manner. Gene expression patterns of miRNA compared with those of their predicted mRNA targets indicated that a majority of the differentially expressed miRNAs were down-regulated in response to increased salinity, allowing increased expression of targets involved in diverse biological processes including stress signaling, stress defence, transport, cellular homeostasis, metabolism and other stress-related functions. This study may contribute to the understanding of gene regulation and abiotic stress response of roots and the high-throughput sequencing data sets generated may serve as important resources related to salt tolerance traits for functional genomic studies and genetic improvement in banana.
    Matched MeSH terms: Stress, Physiological/drug effects
  14. Thayale Purayil F, Rajashekar B, S Kurup S, Cheruth AJ, Subramaniam S, Hassan Tawfik N, et al.
    Genes (Basel), 2020 06 10;11(6).
    PMID: 32531994 DOI: 10.3390/genes11060640
    Haloxylon persicum is an endangered western Asiatic desert plant species, which survives under extreme environmental conditions. In this study, we focused on transcriptome analysis of H. persicum to understand the molecular mechanisms associated with drought tolerance. Two different periods of polyethylene glycol (PEG)-induced drought stress (48 h and 72 h) were imposed on H. persicum under in vitro conditions, which resulted in 18 million reads, subsequently assembled by de novo method with more than 8000 transcripts in each treatment. The N50 values were 1437, 1467, and 1524 for the control sample, 48 h samples, and 72 h samples, respectively. The gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis resulted in enrichment of mitogen-activated protein kinase (MAPK) and plant hormone signal transduction pathways under PEG-induced drought conditions. The differential gene expression analysis (DGEs) revealed significant changes in the expression pattern between the control and the treated samples. The KEGG analysis resulted in mapping transcripts with 138 different pathways reported in plants. The differential expression of drought-responsive transcription factors depicts the possible signaling cascades involved in drought tolerance. The present study provides greater insight into the fundamental transcriptome reprogramming of desert plants under drought.
    Matched MeSH terms: Stress, Physiological/drug effects
  15. Lim JJ, Wan Zurinah WN, Mouly V, Norwahidah AK
    Oxid Med Cell Longev, 2019;2019:9141343.
    PMID: 30774750 DOI: 10.1155/2019/9141343
    Human skeletal muscle is a vital organ involved in movement and force generation. It suffers from deterioration in mass, strength, and regenerative capacity in sarcopenia. Skeletal muscle satellite cells are involved in the regeneration process in response to muscle loss. Tocotrienol, an isomer of vitamin E, was reported to have a protective effect on cellular aging. This research is aimed at determining the modulation of tocotrienol-rich fraction (TRF) on the gene expressions of stress-induced premature senescence (SIPS) human skeletal muscle myoblasts (CHQ5B). CHQ5B cells were divided into three groups, i.e., untreated young control, SIPS control (treated with 1 mM hydrogen peroxide), and TRF-posttreated groups (24 hours of 50 μg/mL TRF treatment after SIPS induction). The differential gene expressions were assessed using microarray, GSEA, and KEGG pathway analysis. Results showed that TRF treatment significantly regulated the gene expressions, i.e., p53 (RRM2B, SESN1), ErbB (EREG, SHC1, and SHC3), and FoxO (MSTN, SMAD3) signalling pathways in the SIPS myoblasts compared to the SIPS control group (p < 0.05). TRF treatment modulated the proliferation capacity of SIPS myoblasts through regulation of ErbB (upregulation of expression of EREG, SHC1, and SHC3) and FoxO (downregulation of expression of MSTN and SMAD3) and maintaining the renewal of satellite cells through p53 signalling (upregulation of RRM2B and SESN1), MRF, cell cycle, and Wnt signalling pathways.
    Matched MeSH terms: Stress, Physiological/drug effects*
  16. Zadeh-Ardabili PM, Rad SK, Rad SK, Movafagh A
    Sci Rep, 2019 Dec 27;9(1):19953.
    PMID: 31882885 DOI: 10.1038/s41598-019-56360-8
    Oxidative stress has significant role in pathophysiology of any kind of depression through actions of free radicals, non-radical molecules, and unbalancing antioxidant systems in body. In the current study, antidepressant responses of fish oil (FO), Neptune krill oil (NKO), vitamin B12 (Vit B12), and also imipramine (IMP) as the reference were studied. Natural light was employed to induce stress in the animals followed by oral administration of the drugs for 14 days. The antidepressant effect was assessed by tail suspension test (TST) and forced swimming test (FST), antioxidant enzymes and oxidative stress markers were then measured in the brain tissue of the animals. The administration of FO and NKO could significantly reduce the immobility of the animals; while, increasing climbing and swimming time compared to the normal saline in CUS-control group in TST and FST, similarly to IMP but not with Vit B12. Vit B12 could not effect on SOD activity and H2O2 level, but, cause decrease of the malondialdihydric (MDA) level and CAT activity, as well as increased the GPx and GSH activities. The rest treatments led to decrease of MDA, H2O2 levels and CAT activity and increase of GPx, SOD, GSH activities.
    Matched MeSH terms: Stress, Physiological/drug effects
  17. Greenwood M, Greenwood MP, Mecawi AS, Loh SY, Rodrigues JA, Paton JF, et al.
    Mol Brain, 2015 Oct 26;8(1):68.
    PMID: 26503226 DOI: 10.1186/s13041-015-0159-1
    BACKGROUND: Arginine vasopressin (AVP), a neuropeptide hormone that functions in the regulation of water homeostasis by controlling water re-absorption at kidneys, is synthesised in supraoptic nucleus and paraventricular nucleus of the hypothalamus. An increase in plasma osmolality stimulates secretion of AVP to blood circulation and induces AVP synthesis in these nuclei. Although studies on mechanism of AVP transcriptional regulation in hypothalamus proposed that cAMP and glucocorticoids positively and negatively regulate Avp expression, respectively, the molecular mechanisms have remained elusive. Recently, we identified CREB3L1 (cAMP-responsive element binding protein 3 like 1) as a putative transcription factor of Avp transcription in the rat hypothalamus. However the mechanism of how CREB3L1 is regulated in response of hyperosmotic stress in the neurons of hypothalamus has never been reported. This study aims to investigate effect of previously reported regulators (cAMP and glucocorticoid) of Avp transcription on transcription factor CREB3L1 in order to establish a molecular explanation for cAMP and glucocorticoids effect on AVP expression.

    RESULTS: The effect of cAMP and glucocorticoid treatment on Creb3l1 was investigated in both AtT20 cells and hypothalamic organotypic cultures. The expression of Creb3l1 was increased in both mRNA and protein level by treatment with forskolin, which raises intracellular cAMP levels. Activation of cAMP by forskolin also increased Avp promoter activity in AtT20 cells and this effect was blunted by shRNA mediated silencing of Creb3l1. The forskolin induced increase in Creb3l1 expression was diminished by combined treatment with dexamethasone, and, in vivo, intraperitoneal dexamethasone injection blunted the increase in Creb3l1 and Avp expression induced by hyperosmotic stress.

    CONCLUSION: Here we shows that cAMP and glucocorticoid positively and negatively regulate Creb3l1 expression in the rat hypothalamus, respectively, and regulation of cAMP on AVP expression is mediated through CREB3L1. This data provides the connection between CREB3L1, a newly identified transcription factor of AVP expression, with the previously proposed mechanism of Avp transcription which extends our understanding in transcription regulation of Avp in the hypothalamus.

    Matched MeSH terms: Stress, Physiological/drug effects
  18. Greenwood MP, Greenwood M, Mecawi AS, Antunes-Rodrigues J, Paton JF, Murphy D
    Mol Brain, 2016 Jan 07;9:1.
    PMID: 26739966 DOI: 10.1186/s13041-015-0182-2
    BACKGROUND: Rasd1 is a member of the Ras family of monomeric G proteins that was first identified as a dexamethasone inducible gene in the pituitary corticotroph cell line AtT20. Using microarrays we previously identified increased Rasd1 mRNA expression in the rat supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus in response to increased plasma osmolality provoked by fluid deprivation and salt loading. RASD1 has been shown to inhibit adenylyl cyclase activity in vitro resulting in the inhibition of the cAMP-PKA-CREB signaling pathway. Therefore, we tested the hypothesis that RASD1 may inhibit cAMP stimulated gene expression in the brain.

    RESULTS: We show that Rasd1 is expressed in vasopressin neurons of the PVN and SON, within which mRNA levels are induced by hyperosmotic cues. Dexamethasone treatment of AtT20 cells decreased forskolin stimulation of c-Fos, Nr4a1 and phosphorylated CREB expression, effects that were mimicked by overexpression of Rasd1, and inhibited by knockdown of Rasd1. These effects were dependent upon isoprenylation, as both farnesyltransferase inhibitor FTI-277 and CAAX box deletion prevented Rasd1 inhibition of cAMP-induced gene expression. Injection of lentiviral vector into rat SON expressing Rasd1 diminished, whereas CAAX mutant increased, cAMP inducible genes in response to osmotic stress.

    CONCLUSIONS: We have identified two mechanisms of Rasd1 induction in the hypothalamus, one by elevated glucocorticoids in response to stress, and one in response to increased plasma osmolality resulting from osmotic stress. We propose that the abundance of RASD1 in vasopressin expressing neurons, based on its inhibitory actions on CREB phosphorylation, is an important mechanism for controlling the transcriptional responses to stressors in both the PVN and SON. These effects likely occur through modulation of cAMP-PKA-CREB signaling pathway in the brain.

    Matched MeSH terms: Stress, Physiological/drug effects
  19. Makpol S, Abdul Rahim N, Hui CK, Ngah WZ
    Oxid Med Cell Longev, 2012;2012:785743.
    PMID: 22919441 DOI: 10.1155/2012/785743
    In this study, we determined the molecular mechanism of γ-tocotrienol (GTT) in preventing cellular aging by focusing on its anti-apoptotic effect in stress-induced premature senescence (SIPS) model of human diploid fibroblasts (HDFs). Results obtained showed that SIPS exhibited senescent-phenotypic characteristic, increased expression of senescence-associated β-galactosidase (SA β-gal) and promoted G(0)/G(1) cell cycle arrest accompanied by shortening of telomere length with decreased telomerase activity. Both SIPS and senescent HDFs shared similar apoptotic changes such as increased Annexin V-FITC positive cells, increased cytochrome c release and increased activation of caspase-9 and caspase-3 (P < 0.05). GTT treatment resulted in a significant reduction of Annexin V-FITC positive cells, inhibited cytochrome c release and decreased activation of caspase-9 and caspase-3 (P < 0.05). Gene expression analysis showed that GTT treatment down regulated BAX mRNA, up-regulated BCL2A1 mRNA and decreased the ratio of Bax/Bcl-2 protein expression (P < 0.05) in SIPS. These findings suggested that GTT inhibits apoptosis by modulating the upstream apoptosis cascade, causing the inhibition of cytochrome c release from the mitochondria with concomitant suppression of caspase-9 and caspase-3 activation. In conclusion, GTT delays cellular senescence of human diploid fibroblasts through the inhibition of intrinsic mitochondria-mediated pathway which involved the regulation of pro- and anti-apoptotic genes and proteins.
    Matched MeSH terms: Stress, Physiological/drug effects
  20. Azzeme AM, Abdullah SNA, Aziz MA, Wahab PEM
    Plant Physiol Biochem, 2017 Mar;112:129-151.
    PMID: 28068641 DOI: 10.1016/j.plaphy.2016.12.025
    Dehydration-responsive element binding (DREB) transcription factor plays an important role in controlling the expression of abiotic stress responsive genes. An intronless oil palm EgDREB1 was isolated and confirmed to be a nuclear localized protein. Electrophoretic mobility shift and yeast one-hybrid assays validated its ability to interact with DRE/CRT motif. Its close evolutionary relation to the dicot NtDREB2 suggests a universal regulatory role. In order to determine its involvement in abiotic stress response, functional characterization was performed in oil palm seedlings subjected to different levels of drought severity and in EgDREB1 transgenic tomato seedlings treated by abiotic stresses. Its expression in roots and leaves was compared with several antioxidant genes using quantitative real-time PCR. Early accumulation of EgDREB1 in oil palm roots under mild drought suggests possible involvement in the initiation of signaling communication from root to shoot. Ectopic expression of EgDREB1 in T1 transgenic tomato seedlings enhanced expression of DRE/CRT and non-DRE/CRT containing genes, including tomato peroxidase (LePOD), ascorbate peroxidase (LeAPX), catalase (LeCAT), superoxide dismutase (LeSOD), glutathione reductase (LeGR), glutathione peroxidase (LeGP), heat shock protein 70 (LeHSP70), late embryogenesis abundant (LeLEA), metallothionine type 2 (LeMET2), delta 1-pyrroline-5- carboxylate synthetase (LePCS), ABA-aldehyde oxidase (LeAAO) and 9-cis- Epoxycarotenoid dioxygenase (LeECD) under PEG treatment and cold stress (4 °C). Altogether, these findings suggest that EgDREB1 is a functional regulator in enhancing tolerance to drought and cold stress.
    Matched MeSH terms: Stress, Physiological/drug effects
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links