Displaying all 4 publications

Abstract:
Sort:
  1. Sridharan R, Engle MP, Garg N, Wei W, Amini B
    Skeletal Radiol, 2017 Apr;46(4):533-538.
    PMID: 28161721 DOI: 10.1007/s00256-017-2587-8
    OBJECTIVE: To determine if focal increased uptake at the rotator interval (RI) and/or inferior capsule (IC) on18F-FDG PET/CT ("positive PET") predicts the presence of adhesive capsulitis (AC).

    MATERIALS AND METHODS: Three populations were retrospectively examined. Group 1 included 1,137 consecutive18F-FDG PET/CT studies and was used to determine the prevalence of focal uptake at the RI or IC. Group 2 included 361 cases from a 10-year period with18F-FDG PET/CT and MRI of shoulder performed within 45 days of each other and was used to enrich the study group. Group 3 included 109 randomly selected patients from the same time frame as groups 1 and 2 and was used to generate the control group. The study group consisted of 15 cases from the three groups, which had positive PET findings. PET/CT images were assessed in consensus by two musculoskeletal radiologists. The reference standard for a diagnosis of AC was clinical and was made by review of the medical record by a pain medicine physician.

    RESULTS: The prevalence of focal activity at either the RI or IC ("positive PET") was 0.53%. Nine patients had a clinical diagnosis of AC and 15 patients had a positive PET. The sensitivity and specificity of PET for detection of AC was 56% and 87%, respectively. PET/CT had a positive likelihood ratio for AC of 6.3 (95% CI: 2.8-14.6).

    CONCLUSIONS: Increased uptake at the RI or IC on PET/CT confers a moderate increase in the likelihood of AC.

    Matched MeSH terms: Radiopharmaceuticals/pharmacokinetics*
  2. Hani AF, Kumar D, Malik AS, Walter N, Razak R, Kiflie A
    Acad Radiol, 2015 Jan;22(1):93-104.
    PMID: 25481518 DOI: 10.1016/j.acra.2014.08.008
    Quantitative assessment of knee articular cartilage (AC) morphology using magnetic resonance (MR) imaging requires an accurate segmentation and 3D reconstruction. However, automatic AC segmentation and 3D reconstruction from hydrogen-based MR images alone is challenging because of inhomogeneous intensities, shape irregularity, and low contrast existing in the cartilage region. Thus, the objective of this research was to provide an insight into morphologic assessment of AC using multilevel data processing of multinuclear ((23)Na and (1)H) MR knee images.
    Matched MeSH terms: Radiopharmaceuticals/pharmacokinetics
  3. Yeong CH, Ng KH, Abdullah BJJ, Chung LY, Goh KL, Perkins AC
    Appl Radiat Isot, 2014 Dec;94:216-220.
    PMID: 25222875 DOI: 10.1016/j.apradiso.2014.08.009
    Radionuclide imaging using (111)In, (99m)Tc and (153)Sm is commonly undertaken for the clinical investigation of gastric emptying, intestinal motility and whole gut transit. However the documented evidence concerning internal radiation dosimetry for such studies is not readily available. This communication documents the internal radiation dosimetry for whole gastrointestinal transit studies using (111)In, (99m)Tc and (153)Sm labeled formulations. The findings were compared to the diagnostic reference levels recommended by the United Kingdom Administration of Radioactive Substances Advisory Committee, for gastrointestinal transit studies.
    Matched MeSH terms: Radiopharmaceuticals/pharmacokinetics*
  4. Ashhar Z, Yusof NA, Ahmad Saad FF, Mohd Nor SM, Mohammad F, Bahrin Wan Kamal WH, et al.
    Molecules, 2020 Jun 09;25(11).
    PMID: 32526838 DOI: 10.3390/molecules25112668
    Early diagnosis of bone metastases is crucial to prevent skeletal-related events, and for that, the non-invasive techniques to diagnose bone metastases that make use of image-guided radiopharmaceuticals are being employed as an alternative to traditional biopsies. Hence, in the present work, we tested the efficacy of a gallium-68 (68Ga)-based compound as a radiopharmaceutical agent towards the bone imaging in positron emitting tomography (PET). For that, we prepared, thoroughly characterized, and radiolabeled [68Ga]Ga-NODAGA-pamidronic acid radiopharmaceutical, a 68Ga precursor for PET bone cancer imaging applications. The preparation of NODAGA-pamidronic acid was performed via the N-Hydroxysuccinimide (NHS) ester strategy and was characterized using liquid chromatography-mass spectrometry (LC-MS) and tandem mass spectrometry (MSn). The unreacted NODAGA chelator was separated using the ion-suppression reverse phase-high performance liquid chromatography (RP-HPLC) method, and the freeze-dried NODAGA-pamidronic acid was radiolabeled with 68Ga. The radiolabeling condition was found to be most optimum at a pH ranging from 4 to 4.5 and a temperature of above 60 °C. From previous work, we found that the pamidronic acid itself has a good bone binding affinity. Moreover, from the analysis of the results, the ionic structure of radiolabeled [68Ga]Ga-NODAGA-pamidronic acid has the ability to improve the blood clearance and may exert good renal excretion, enhance the bone-to-background ratio, and consequently the final image quality. This was reflected by both the in vitro bone binding assay and in vivo animal biodistribution presented in this research.
    Matched MeSH terms: Radiopharmaceuticals/pharmacokinetics*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links