Displaying all 10 publications

Abstract:
Sort:
  1. Smith CEG, Wells CW
    PMID: 13240301
    Matched MeSH terms: Rabies/epidemiology*
  2. Lim KG
    Med J Malaysia, 1998 Mar;53(1):4-5.
    PMID: 10968129
    Matched MeSH terms: Rabies/epidemiology*
  3. Tan DS, Peck AJ, Omar M
    Med J Malaya, 1969 Sep;24(1):32-5.
    PMID: 4243840
    Matched MeSH terms: Rabies/epidemiology*
  4. Tan YS
    PMID: 3238465
    Matched MeSH terms: Rabies/epidemiology*
  5. Loke YK, Murugesan E, Suryati A, Tan MH
    Med J Malaysia, 1998 Mar;53(1):97-100.
    PMID: 10968145
    The presence of rabies in dogs has been well recognized in areas of Malaysia close to the Thai border but it has rarely ever been reported in Terengganu which is a state on the East Coast of Malaysia. From November 1995 to June 1996 six different rabid stray dogs were found to have been involved in dog bite attacks on 9 members of the public. We report these cases to highlight that rabid dog bites may occur even in areas where the disease is thought to be rate. Medical and veterinary staff must keep the possibility of the risk of rabies in mind when faced with patients who have been bitten by dogs.
    Matched MeSH terms: Rabies/epidemiology*
  6. Tan DS, Ariff AW, Mohamed Noordin Keling
    Med J Malaya, 1972 Dec;27(2):107-14.
    PMID: 4268035
    Matched MeSH terms: Rabies/epidemiology*
  7. Fu ZF
    Dev Biol (Basel), 2008;131:55-61.
    PMID: 18634466
    This study evaluated rabies epidemiology in Far EastAsia. Questionnaires were sent by the OIE to Far East Asian countries and eight questionnaires were returned. Data were collected from these returns, as well as from recent publications, to gather information regarding rabies epidemiology in these countries. More than 29,000 human deaths were reported in 2006 in Far East Asia, representing more than 50% of all human rabies cases around the globe. There are only a few countries or regions from which no human rabies was reported in 2006 such as Japan, Singapore, South Korea, Malaysia, Hong Kong, and Taiwan. In many of these rabies endemic countries, the number of human rabies cases has not changed much during the past decade. The only country with a steady decline is Thailand, where the number of cases has decreased from around 200 to about 20 cases per year. The most dramatic changes were observed in China. Human rabies cases declined from around 5,000 cases per year in the 1980s to about 160 in the mid-1990s. However, these trends have since been reversed. A steady increase has been reported over the past 10 years with more than 3,200 cases reported in 2006. Although there are many factors that contribute to the epidemic or endemic nature of rabies in these countries, the single most important factor is the failure to immunize domestic dogs, which transmit rabies to humans. Dog vaccination is at or below 5% in many of these countries, and cannot stop the transmission of rabies from dogs to dogs, thus to humans. It is thus most importantforthese countries to initiate mass vaccination campaigns in dog populations in order to stop the occurrence of human rabies in Far East Asia.
    Matched MeSH terms: Rabies/epidemiology*
  8. Zhang YZ, Xiong CL, Lin XD, Zhou DJ, Jiang RJ, Xiao QY, et al.
    Infect Genet Evol, 2009 Jan;9(1):87-96.
    PMID: 19041424 DOI: 10.1016/j.meegid.2008.10.014
    There have been three major rabies epidemics in China since the 1950s. To gain more insights into the molecular epidemiology of rabies viruses (RVs) for the third (the current) epidemic, we isolated RV from dogs and humans in major endemic areas, and characterized these isolates genetically by sequencing the entire glycoprotein (G) gene and the G-L non-coding region. These sequences were also compared phylogenetically with RVs isolated in China during previous epidemics and those around the world. Comparison of the entire G genes among the Chinese isolates revealed up to 21.8% divergence at the nucleotide level and 17.8% at the amino acid level. The available Chinese isolates could be divided into two distinct clades, each of which could be further divided into six lineages. Viruses in clade I include most of the Chinese viruses as well as viruses from southeast Asian countries including Indonesia, Malaysia, the Philippines, Thailand, and Vietnam. The viruses in the other clade were found infrequently in China, but are closely related to viruses distributed worldwide among terrestrial animals. Interestingly, most of the viruses isolated during the past 10 years belong to lineage A viruses within clade I whereas most of the viruses isolated before 1996 belong to other lineages within clades I and II. Our results indicated that lineages A viruses have been predominant during the past 10 years and thus are largely responsible for the third and the current epidemic in China. Our results also suggested that the Chinese RV isolates in clade I share a common recent ancestor with those circulating in southeast Asia.
    Matched MeSH terms: Rabies/epidemiology
  9. Yamagata J, Ahmed K, Khawplod P, Mannen K, Xuyen DK, Loi HH, et al.
    Microbiol. Immunol., 2007;51(9):833-40.
    PMID: 17895600
    The present study was done to determine the molecular epidemiology of rabies virus (RV) in Vietnam. The nucleoprotein (N) and glycoprotein (G) genes of RVs were amplified from the brains of ten rabid dogs of Ho Chi Minh City, Vietnam. The nucleotide sequences of these genes were compared with those of other Asian strains to find the possible relationship among them. Phylogenetic analysis revealed that the Asian N gene segregated into three main branches, namely South-East Asia 1 (SEA 1), South-East Asia 2 (SEA 2) and Indian subcontinent (ISC) genotypes. The SEA 1 genotype comprised RVs from Malaysia, Vietnam and Thailand. The SEA 2 genotype contained strains from the Philippines, and the ISC genotype comprised strains from Sri Lanka and India. Phylogenetically G genes of RVs from Vietnam and Thailand were clustered together. Our study suggests that Vietnamese and Thai RVs are closely related and might have originated from a common ancestor.
    Matched MeSH terms: Rabies/epidemiology
  10. Nguyen AK, Nguyen DV, Ngo GC, Nguyen TT, Inoue S, Yamada A, et al.
    Jpn J Infect Dis, 2011;64(5):391-6.
    PMID: 21937820
    This study was aimed at determining the molecular epidemiology of rabies virus (RABV) circulating in Vietnam. Intra vitam samples (saliva and cerebrospinal fluid) were collected from 31 patients who were believed to have rabies and were admitted to hospitals in northern provinces of Vietnam. Brain samples were collected from 176 sick or furious rabid dogs from all over the country. The human and canine samples were subjected to reverse transcription-polymerase chain reaction analysis. The findings showed that 23 patients tested positive for RABV. Interestingly, 5 rabies patients did not have any history of dog or cat bites, but they had an experience of butchering dogs or cats, or consuming their meat. RABV was also detected in 2 of the 100 sick dogs from slaughterhouses. Molecular epidemiological analysis of 27 RABV strains showed that these viruses could be classified into two groups. The RABVs classified into Group 1 were distributed throughout Vietnam and had sequence similarity with the strains from China, Thailand, Malaysia, and the Philippines. However, the RABVs classified into Group 2 were only found in the northern provinces of Vietnam and showed high sequence similarity with the strain from southern China. This finding suggested the recent influx of Group 2 RABVs between Vietnam and China across the border. Although the incidence of rabies due to circulating RABVs in slaughterhouses is less common than that due to dog bite, the national program for rabies control and prevention in Vietnam should include monitoring of the health of dogs meant for human consumption and vaccination for workers at dog slaughterhouses. Further, monitoring of and research on the circulating RABVs in dog markets may help to determine the cause of rabies and control the spread of rabies in slaughterhouses in Vietnam.
    Matched MeSH terms: Rabies/epidemiology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links