The γ-aminobutyric acid (GABA) A receptor is composed of a variety of subunits and combinations and shows a characteristic distribution in the CNS. To date, 20 subunits of the GABA A receptor have been cloned: α1-6, β1-4, γ1-3, δ, π, ε , Θ, and ρ1-3. Oocyte of Xenopus laevis is one of the most frequently used heterologous expression systems, which are used to design and analyze specific combinations of GABA A receptor subunits. In oocytes, a certain GABA A receptor function is studied only by comparing the amplitude of the response to GABA and other drugs by physiological and pharmacological methods. According to the studies on Xenopus laevis oocytes, the α1β2γ2S receptor combination is mostly used. The α1-containing receptors mediate sedative and anticonvulsant acts. The results of studies on oocytes show that PKA, NKCC1, P2X3 receptors, and GABA A receptor-associated protein, etc., are existing systems that show different reactivity to the GABA A receptors. The GABA A receptor subunits contain distinct binding sites for BZDs, neurosteroids, general anesthetics, etc., which are responsible for the numerous functions of the GABA A receptor. A variety of other drugs, such as topiramate, TG41, (+)- and (-)-borneol, apigenin, and 6-methylflavone could also have modulatory effects on the GABA A receptors. Some of the different models and hypotheses on GABA A receptor structure and function have been achieved by using the two-electrode voltage clamp method in oocytes.
G protein-coupled receptors (GPCRs) transduce extracellular signals to the interior of the cell by activating membrane-bound guanine nucleotide-binding regulatory proteins (G proteins). An increasing number of proteins have been reported to bind to and regulate GPCRs. We report a novel regulation of the alpha(2A) adrenergic receptor (α(2A)-R) by the ubiquitous stress-inducible 70kDa heat shock protein, hsp70. Hsp70, but not hsp90, attenuated G protein-dependent high affinity agonist binding to the α(2A)-R in Sf9 membranes. Antagonist binding was unchanged, suggesting that hsp70 uncouples G proteins from the receptor. As hsp70 did not bind G proteins but complexed with the α(2A)-R in intact cells, a direct interaction with the receptor seems likely. In the presence of hsp70, α(2A)-R-catalyzed [(35)S]GTPγS binding was reduced by approximately 70%. In contrast, approximately 50-fold higher concentrations of hsp70 were required to reduce agonist binding to the stress-inducible 5-hydroxytryptamine(1A) receptor (5-HT(1A)-R). In heat-stressed CHO cells, the α(2A)-R was significantly uncoupled from G proteins, coincident with an increased localization of hsp70 at the membrane. The contrasting effect of hsp70 on the α(2A)-R compared to the 5-HT(1A)-R suggests that during stress, upregulation of hsp70 may attenuate signaling from specific GPCRs as part of the stress response to foster survival.
An initial study on gene cloning and characterization of unicellular green microalga Ankistrodesmus convolutus was carried out to isolate and characterize the full-length cDNA of ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (RbcS) as a first step towards elucidating the structure of A. convolutus RbcS gene. The full-length of A. convolutus RbcS cDNA (AcRbcS) contained 28 bp of 5' untranslated region (UTR), 225 bp of 3' non-coding region, and an open reading frame of 165 amino acids consisting of a chloroplast transit peptide with 24 amino acids and a mature protein of 141 amino acids. The amino acid sequence has high identity to those of other green algae RbcS genes. The AcRbcS contained a few conserved domains including protein kinase C phosphorylation site, tyrosine kinase phosphorylation site and N-myristoylation sites. The AcRbcS was successfully expressed in Escherichia coli and a ~21 kDa of anticipated protein band was observed on SDS-PAGE. From the phylogenetic analysis of RbcS protein sequences, it was found that the RbcS of A. convolutus has closer genetic relationship with green microalgae species compared to those of green seaweed and green macroalgae species. Southern hybridization analysis revealed that the AcRbcS is a member of a small multigene family comprising of two to six members in A. convolutus genome. Under different illumination conditions, RT-PCR analysis showed that AcRbcS transcription was reduced in the dark, and drastically recovered in the light condition. Results presented in this paper established a good foundation for further study on the photosynthetic process of A. convolutus and other green algae species where little information is known on Rubisco small subunit.
Nuclear factor-kappa B (NF-κB) plays a role in prostate cancer and agents that suppress its activation may inhibit development or progression of this malignancy. Alpha (α)-tomatine is the major saponin present in tomato (Lycopersicon esculentum) and we have previously reported that it suppresses tumor necrosis factor-alpha (TNF-α)-induced nuclear translocation of nuclear factor-kappa B (NF-κB) in androgen-independent prostate cancer PC-3 cells and also potently induces apoptosis of these cells. However, the precise mechanism by which α-tomatine suppresses NF-κB nuclear translocation is yet to be elucidated and the anti-tumor activity of this agent in vivo has not been examined.